Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. Synthesis of titanate nanotubes via microwave hydrothermal treatment: Study on the characterization and photocatalytic potential
 
  • Details

Synthesis of titanate nanotubes via microwave hydrothermal treatment: Study on the characterization and photocatalytic potential

Date Issued
2008
Date
2008
Author(s)
Ou, Hsin-Hung
URI
http://ntur.lib.ntu.edu.tw//handle/246246/181526
Abstract
Despite TiO2-based photocatalysis has been extensively investigated and examined over the past decades, it is still a highly engrossing technology owing to the stability and low cost. Recently, TiO2-induced titanate nanotubes (TNTs) have received much attention as a result of high specific surface area. Traditional method in fabricating TNTs, however, needs at least 20 hr reaction time to achieve a perfect tube structure. Therefore, this research aimed to the rapid formation kinetics of TNTs with the aid of microwave irradiation and attempted to investigate the effect of microwave irradiation on the characterization of titanate nanotubes (microwave-induced TNTs). Photocatalytic behavior of microwave-induced TNTs towards the degradation of gaseous trichloroethylene (TCE) and aqueous ammonia (NH3/NH4+) were also examined to survey the photocatalytic potential of microwave-induced TNTs.ased on the performance of BET surface area (SBET), TNTs synthesized at 130℃ for 1.5 hr with and without 400W irradiation presented the SBET of 256 and 76 m2g-1, respectively. The result indicates that the formation kinetics of TNTs is significantly enhanced via microwave hydrothermal treatment. The microwave-induced TNTs are preferentially assigned for NaxH2-xTi3O7 whose Na/H ratio is dominated by the applied lever of microwave irradiation during fabrication process. This phenomenon can be evidenced by various determinations including powder X-ray diffraction, NH3-temperature programmable desorption, X-ray photoelectron spectroscopic, and ionic coupled plasma-atomic emission spectrometry. Regarding the behavior of TNTs after thermal treatment, TNTs with abounding H atoms presented anatase phase at 500℃ through rearrangement and restacking of [TiO6]. The sintered TNTs synthesized under high irradiation power presented the rod shape at 700℃ which mainly comprise of Na2Ti6O13. The (Ti6O13)2- unit within Na2Ti6O13 is constructed by two (Ti3O7)2- layers within TNTs via the topotactical connection along the [110] direction during thermal process.s for the photocatalytic potential of TNTs, a pure TNTs phase presents no powerful ability towards photocatalytic NH3/NH4+ while the photocatalytic efficiency can be enhanced with the presence of rutile phase within TNTs. Regarding the effect of acid-washing treatment on TNTs, the acid-treated TNTs with enhanced ion exchangeability considerably improve the NH3/NH4+ degradation and NO2-/NO3- yields. This result is likely ascribed to the easy intercalation of NH3/NH4+ into the structure of acid-washing TNTs so that the photocatalytic oxidation of intercalated NH3/NH4+ is not limited to the shielding effect resulting from the overload of TNTs. In the case of photocatalytic TCE over TNTs, the efficiency of TCE degradation enhances with increasing sintering temperature until 700℃。This phenomenon is attributed to the recrystallization of anatase phase and the construction of inter-particle electron transfer effect. Photocatalytic TCE over Pt/Pd doped TNTs-induced TiO2 was also investigated in terms of the effect of Pt and Pd on the TCE degradation and on the yields of dichloroacetyl chloride (DCAC) and phosgene. In the presence of Pt and Pd, the degradation of TCE was retarded; especially Pd had a significantly negative effect on TCE degradation, which was ascribed to the intercalation of Pd into the lattice of TiO2. Moreover, Pt had no influence on the selectivity toward DCAC and phosgene while the selectivity toward phosgene in the presence of Pd was enhanced. As for the behavior of Pt and Pd in TCE degradation, Pt doped TiO2 exhibited the same photocatalytic behavior as P25 TiO2 whereas Pd doped TiO2 led to a different photocatalytic mechanism. Although microwave-induced TNTs have no powerful ability in photocatalysis and ion exchange, they can still be considered as a potential material in some applications owing to the corresponding bi-functions.
Subjects
TiO2
Titanate nanotubes
Microwave hydrothermal
Photocatalysis
Aqueous ammonia
Trichloroethylene
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-97-D92541008-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):3e47fdf4a5af3dcdc53be2e40a0ae877

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science