Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Public Health / 公共衛生學院
  3. Epidemiology and Preventive Medicine / 流行病學與預防醫學研究所
  4. Semiparametric Bayesian Analysis of Mixed Models for Clustered data
 
  • Details

Semiparametric Bayesian Analysis of Mixed Models for Clustered data

Date Issued
2004
Date
2004
Author(s)
Tung, Yi-Liang
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/56198
Abstract
In this thesis I consider Bayesian semi-parametric analysis of mixed-effects models for clustered data. Particularly, I consider the additive mixed model and varying-coefficient mixed model, and use nonparametric arbitrary smooth functions to represent the covariate effects. I model the nonparametric functions using the qth-degree polynomial penalized splines with fixed knots, and specify the prior for the corresponding smoothing parameter of each function. A computationally efficient Markov chain Monte Carlo (MCMC) algorithm is proposed to simulate posterior samples for inference. In addition to the continuous response setting, the binary and count data are also considered and discussed in detail. Special attention is necessary due to the non-conjugacy for binary data with logit link and count data with log link. I also develop a modified Metropolis-Hastings algorithms to mix the Markov chain and increase the speed. The simulation studies show that the posterior mean via nonparametric approach captures well the true functional forms. In addition to the estimation, I also address the problem of model choice between the competing parametric and semi-parametric specifications using marginal likelihoods and Bayes factors. Finally, the data of multicenter AIDS cohort study (Kaslow et al. 1987) are considered for illustration.
Subjects
邊際機率
計數資料
二元資料
馬可夫鏈蒙地卡羅法
長期追蹤資料
無參數化迴歸
懲罰性節點
變化係數混合效應模式
貝氏因子
貝氏模式比較
相加性混合效應模式
Longitudinal data
Count data
Binary data
Markov Chain Monte Carlo
Marginal likelihood
Nonparametric regression
Varying-coefficient mixed models
Penalized splines
Bayesian model comparison
Bayes factor
Additive mixed models
SDGs

[SDGs]SDG3

Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science