Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Electrochemical hydrogenation and hydrogenolysis of furfural on copper electrode enhanced by surface environment modulation with metal–organic framework
 
  • Details

Electrochemical hydrogenation and hydrogenolysis of furfural on copper electrode enhanced by surface environment modulation with metal–organic framework

Journal
Chemical Engineering Journal
Journal Volume
506
Start Page
159800
ISSN
1385-8947
Date Issued
2025-01-15
Author(s)
Yu-Shuo Lee
Chi-Wei Huang
Chun-Ting Yueh
Chung-Wei Kung
Wen-Yueh Yu  
DOI
10.1016/j.cej.2025.159800
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85216245569&origin=recordpage
https://scholars.lib.ntu.edu.tw/handle/123456789/728121
Abstract
Recently advancements in electrochemical hydrogenation and hydrogenolysis (ECH) have sought to improve the sustainable production of biochemicals. Cu foil has been extensively investigated in the ECH reaction of furfural (FF) into furfuryl alcohol (FA) and 2-methylfuran (MF) while its catalytic performance is still impeded by its intrinsically flat surface. In this study, we propose a facile approach to improving the ECH reaction of FF over Cu foil by surface modifications with MOF-808, a Zr-based metal–organic framework with abundant terminal –OH/OH2 groups. The coordinatively unsaturated Zr site (Zr-CUS) present in framework could act as Lewis acid center to interact with the carbonyl oxygen of FF, thus facilitating the diffusion of FF from the electrolyte solution to near-surface region of Cu electrode. The terminal –OH/OH2 functional groups on the node could serve as proton donors and/or acceptors, thereby creating the proton-rich environment at the surface of Cu electrode. The findings in this study demonstrate an effective strategy to enhance the electrocatalytic performance of metal foil electrode via the modifications with rationally designed MOF overlayer.
Subjects
Electrochemistry
Furfural
Hydrogenation
Hydrogenolysis
Metal–organic framework
Publisher
Elsevier BV
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science