Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. This is SPATEM! A Spatial-Temporal Optimization Framework for Efficient Inference on ReRAM-based CNN Accelerator
 
  • Details

This is SPATEM! A Spatial-Temporal Optimization Framework for Efficient Inference on ReRAM-based CNN Accelerator

Journal
Proceedings of the Asia and South Pacific Design Automation Conference, ASP-DAC
Journal Volume
2022-January
Pages
702-707
Date Issued
2022
Author(s)
Tsou Y.-T
Chent K.-H
CHIA-LIN YANG  
Cheng H.-Y
Chen J.-J
Tsai D.-Y.
DOI
10.1109/ASP-DAC52403.2022.9712536
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126122494&doi=10.1109%2fASP-DAC52403.2022.9712536&partnerID=40&md5=479ff55821c4e72f52afe6d78e976704
https://scholars.lib.ntu.edu.tw/handle/123456789/632186
Abstract
Resistive memory-based computing-in-memory (CIM) has been considered as a promising solution to accelerate convolutional neural networks (CNN) inference, which stores the weights in crossbar memory arrays and performs in-situ matrix-vector multiplications (MVMs) in an analog manner. Several techniques assume that a whole crossbar can operate concurrently and discuss how to efficiently map the weights onto crossbar arrays. However, in practice, the accumulated effect of per-cell current deviation and Analog-to-Digital-Converter overhead may greatly degrade inference accuracy, which motivates the concept of Operation Unit (OU), by which an operation per cycle in a crossbar only involve limited wordlines and bitlines to preserve satisfactory inference accuracy. With OU-based operations, the mapping of weights and scheduling strategy for parallelizing CNN convolution operations should take the cost of communication overhead and resource utilization into consideration to optimize the inference acceleration. In this work, we propose the first optimization framework named SPATEM, that efficiently executes MVMs with OU-based operations on ReRAM-based CIM accelerators. It decouples the design space into tractable steps, models the expected inference latency, and derives an optimized spatial-temporal-aware scheduling strategy. By comparing with state-of-the-arts, the experimental result shows that the derived scheduling strategy of SPATEM achieves on average 29.24% inference latency reduction with 31.28% less communication overhead by exploiting more originally unused crossbar cells. © 2022 IEEE.
Other Subjects
Analog to digital conversion; Convolutional neural networks; Rhenium compounds; RRAM; Scheduling; Communication overheads; Convolutional neural network; Matrix vector multiplication; Memory based computing; Operations units; Optimization framework; Resistive memory; Scheduling strategies; Spatial temporals; Unit-based; Convolution
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science