Publication:
Urine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approach

cris.lastimport.scopus2025-05-08T22:05:02Z
cris.virtual.departmentInternal Medicine-NTUHen_US
cris.virtual.departmentInternal Medicineen_US
cris.virtual.departmentInternal Medicine-NTUHen_US
cris.virtual.departmentSurgery-NTUHen_US
cris.virtual.departmentSurgeryen_US
cris.virtual.departmentSurgery-NTUHen_US
cris.virtual.departmentSurgeryen_US
cris.virtual.orcid0000-0001-7614-3903en_US
cris.virtual.orcid0000-0002-2663-5042en_US
cris.virtual.orcid0000-0003-3846-8162en_US
cris.virtual.orcid0000-0001-6669-4699en_US
cris.virtualsource.department60a83473-504f-405f-b816-44de2a0c7536
cris.virtualsource.department60a83473-504f-405f-b816-44de2a0c7536
cris.virtualsource.department03630dfb-fa91-4ede-ad32-87e2698bd859
cris.virtualsource.departmentefd8697f-d659-4998-8c39-b3f09326f150
cris.virtualsource.departmentefd8697f-d659-4998-8c39-b3f09326f150
cris.virtualsource.department0105b017-3cd4-4cb3-8d8d-a3da49035c95
cris.virtualsource.department0105b017-3cd4-4cb3-8d8d-a3da49035c95
cris.virtualsource.orcid60a83473-504f-405f-b816-44de2a0c7536
cris.virtualsource.orcid03630dfb-fa91-4ede-ad32-87e2698bd859
cris.virtualsource.orcidefd8697f-d659-4998-8c39-b3f09326f150
cris.virtualsource.orcid0105b017-3cd4-4cb3-8d8d-a3da49035c95
dc.contributor.authorSHENG-NAN CHANGen_US
dc.contributor.authorHu, Nian-Zeen_US
dc.contributor.authorWu, Jo-Hsuanen_US
dc.contributor.authorCheng, Hsun-Maoen_US
dc.contributor.authorCaffrey, James Len_US
dc.contributor.authorHSI-YU YUen_US
dc.contributor.authorYIH-SHARNG CHENen_US
dc.contributor.authorHsu, Jiunen_US
dc.contributor.authorJOU-WEI LINen_US
dc.date.accessioned2023-10-19T07:34:04Z
dc.date.available2023-10-19T07:34:04Z
dc.date.issued2023-09-15
dc.description.abstractBackground: It is common to support cardiovascular function in critically ill patients with extracorporeal membrane oxygenation (ECMO). The purpose of this study was to identify patients receiving ECMO with a considerable risk of dying in hospital using machine learning algorithms. Methods: A total of 1342 adult patients on ECMO support were randomly assigned to the training and test groups. The discriminatory power (DP) for predicting in-hospital mortality was tested using both random forest (RF) and logistic regression (LR) algorithms. Results: Urine output on the first day of ECMO implantation was found to be one of the most predictive features that were related to in-hospital death in both RF and LR models. For those with oliguria, the hazard ratio for 1 year mortality was 1.445 (p < 0.001, 95% CI 1.265-1.650). Conclusions: Oliguria within the first 24 h was deemed especially significant in differentiating in-hospital death and 1 year mortality.
dc.identifier.doi10.1186/s40001-023-01294-1
dc.identifier.issn09492321
dc.identifier.pmid37715216
dc.identifier.scopus2-s2.0-85171357298
dc.identifier.urihttps://pubmed.ncbi.nlm.nih.gov/37715216/
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/636221
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85171357298
dc.language.isoenen_US
dc.publisherBioMed Central Ltd
dc.relation.ispartofEuropean journal of medical researchen_US
dc.relation.journalissue1en_US
dc.relation.journalvolume28en_US
dc.relation.pages347en_US
dc.subjectExtracorporeal membrane oxygenation
dc.subjectMachine learning algorithm
dc.subjectOliguria
dc.subjectRandom forest
dc.titleUrine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approachen_US
dc.typejournal articleen
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: