Publication: Urine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approach
cris.lastimport.scopus | 2025-05-08T22:05:02Z | |
cris.virtual.department | Internal Medicine-NTUH | en_US |
cris.virtual.department | Internal Medicine | en_US |
cris.virtual.department | Internal Medicine-NTUH | en_US |
cris.virtual.department | Surgery-NTUH | en_US |
cris.virtual.department | Surgery | en_US |
cris.virtual.department | Surgery-NTUH | en_US |
cris.virtual.department | Surgery | en_US |
cris.virtual.orcid | 0000-0001-7614-3903 | en_US |
cris.virtual.orcid | 0000-0002-2663-5042 | en_US |
cris.virtual.orcid | 0000-0003-3846-8162 | en_US |
cris.virtual.orcid | 0000-0001-6669-4699 | en_US |
cris.virtualsource.department | 60a83473-504f-405f-b816-44de2a0c7536 | |
cris.virtualsource.department | 60a83473-504f-405f-b816-44de2a0c7536 | |
cris.virtualsource.department | 03630dfb-fa91-4ede-ad32-87e2698bd859 | |
cris.virtualsource.department | efd8697f-d659-4998-8c39-b3f09326f150 | |
cris.virtualsource.department | efd8697f-d659-4998-8c39-b3f09326f150 | |
cris.virtualsource.department | 0105b017-3cd4-4cb3-8d8d-a3da49035c95 | |
cris.virtualsource.department | 0105b017-3cd4-4cb3-8d8d-a3da49035c95 | |
cris.virtualsource.orcid | 60a83473-504f-405f-b816-44de2a0c7536 | |
cris.virtualsource.orcid | 03630dfb-fa91-4ede-ad32-87e2698bd859 | |
cris.virtualsource.orcid | efd8697f-d659-4998-8c39-b3f09326f150 | |
cris.virtualsource.orcid | 0105b017-3cd4-4cb3-8d8d-a3da49035c95 | |
dc.contributor.author | SHENG-NAN CHANG | en_US |
dc.contributor.author | Hu, Nian-Ze | en_US |
dc.contributor.author | Wu, Jo-Hsuan | en_US |
dc.contributor.author | Cheng, Hsun-Mao | en_US |
dc.contributor.author | Caffrey, James L | en_US |
dc.contributor.author | HSI-YU YU | en_US |
dc.contributor.author | YIH-SHARNG CHEN | en_US |
dc.contributor.author | Hsu, Jiun | en_US |
dc.contributor.author | JOU-WEI LIN | en_US |
dc.date.accessioned | 2023-10-19T07:34:04Z | |
dc.date.available | 2023-10-19T07:34:04Z | |
dc.date.issued | 2023-09-15 | |
dc.description.abstract | Background: It is common to support cardiovascular function in critically ill patients with extracorporeal membrane oxygenation (ECMO). The purpose of this study was to identify patients receiving ECMO with a considerable risk of dying in hospital using machine learning algorithms. Methods: A total of 1342 adult patients on ECMO support were randomly assigned to the training and test groups. The discriminatory power (DP) for predicting in-hospital mortality was tested using both random forest (RF) and logistic regression (LR) algorithms. Results: Urine output on the first day of ECMO implantation was found to be one of the most predictive features that were related to in-hospital death in both RF and LR models. For those with oliguria, the hazard ratio for 1 year mortality was 1.445 (p < 0.001, 95% CI 1.265-1.650). Conclusions: Oliguria within the first 24 h was deemed especially significant in differentiating in-hospital death and 1 year mortality. | |
dc.identifier.doi | 10.1186/s40001-023-01294-1 | |
dc.identifier.issn | 09492321 | |
dc.identifier.pmid | 37715216 | |
dc.identifier.scopus | 2-s2.0-85171357298 | |
dc.identifier.uri | https://pubmed.ncbi.nlm.nih.gov/37715216/ | |
dc.identifier.uri | https://scholars.lib.ntu.edu.tw/handle/123456789/636221 | |
dc.identifier.url | https://api.elsevier.com/content/abstract/scopus_id/85171357298 | |
dc.language.iso | en | en_US |
dc.publisher | BioMed Central Ltd | |
dc.relation.ispartof | European journal of medical research | en_US |
dc.relation.journalissue | 1 | en_US |
dc.relation.journalvolume | 28 | en_US |
dc.relation.pages | 347 | en_US |
dc.subject | Extracorporeal membrane oxygenation | |
dc.subject | Machine learning algorithm | |
dc.subject | Oliguria | |
dc.subject | Random forest | |
dc.title | Urine output as one of the most important features in differentiating in-hospital death among patients receiving extracorporeal membrane oxygenation: a random forest approach | en_US |
dc.type | journal article | en |
dspace.entity.type | Publication |
Files
License bundle
1 - 1 of 1
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: