Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Investigation of groundwater recharge estimation - a case study in Chou-shui River Alluvial fan
 
  • Details

Investigation of groundwater recharge estimation - a case study in Chou-shui River Alluvial fan

Date Issued
2010
Date
2010
Author(s)
Hsu, Hao
URI
http://ntur.lib.ntu.edu.tw//handle/246246/248548
Abstract
The groundwater resource is abundant in Taiwan and it is making a critical issue to exploit groundwater resource properly. Groundwater resources could be well managed and utilized if the storage and movement of groundwater is rationally evaluated. The continually declining groundwater level in Chou-shui river alluvial fan is mainly caused by the unregistered pumping by private wells due to enormous water demand from agriculture and aquaculture, in turn leading to land subsidence and soil salination. In addition, the construction of Taiwan High Speed Rail (THRS) has caused serious land subsidence in Tuku and Yuan-Chang township. This research estimated ground water storage, recharge, and withdraw rate in Chou-Shui river alluvial fan by developing numerical model with MODFLOW and SWAT. Unregistered withdraw by private wells in this area are investigated through comparing registered groundwater rights from Water Resources Agency with simulated discharge. Finally, the recharge efficiency of artificial lakes with radii of 3 km and 1.5 km along the THRS were addressed. Results show that, during 1999 to 2002, averaged recharge in the Chou-Shui river alluvial fan is 1.24 billion tons/year, side-stream recharge is 895.7 million tons/year, and unregistered pumping from private wells is 1.1941 billion tons/year. Scenarios with different elevation, soil, and land use type lead to diverse recharge rate. Highest recharge rate is found at the proximal fan, which is 1 million tons/year/km2. Moreover, recharge rate is 940 thousand tons/year/km2 at Gu-Keng and Dou-Liu, and 532 thousand tons/year/km2 near the Pei-Kang river, the worst case. The locations of two THSR recharge scenarios are close, result in similar recharge rates, which are 807.8 thousand tons/year/km2 for the 3 km lake and 797.2 thousand tons/year/km2 for the 1.5 km lake.
Subjects
Chou-Shui river alluvial fan
Groundwater recharge
SDGs

[SDGs]SDG15

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97622023-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):b51e67295c64f957a89e9e612061f118

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science