Controlling of Structural Ordering and Rigidity of β-SiAlON:Eu through Chemical Cosubstitution to Approach Narrow-Band-Emission for Light-Emitting Diodes Application
Journal
Chemistry of Materials
Journal Volume
29
Journal Issue
16
Pages
6781-6792
Date Issued
2017
Author(s)
Zhang X
Abstract
Narrow-band green-emitting phosphor β-SiAlON:Eu has been widely used in advanced wide-gamut backlighting devices. However, the origins for unusual sharp lines in photoluminescence emission at room temperature and tunable narrow-band-emission tailored by reducing Al-O in β-SiAlON:Eu are still unclear. Here, the presence of sharp-line fine structure in the emission spectra of β-SiAlON:Eu is mainly due to purely electronic transitions (zero phonon lines), and their vibronic repetitions resulting from the multimicroenvironment around Eu2+ ions that has been revealed by relative emission intensity of sharp line depends on excitation wavelength and monotonously increasing decay time. The specific features of the Eu2+ occupying interstitial sites indicate that the effect of crystal field strength can be neglected. Therefore, the enhanced rigidity and higher ordering structure of β-SiAlON:Eu with decreasing the substitution of Si-N by Al-O become the main factors in decreasing electron-lattice coupling and reducing inhomogeneous broadening, favoring the blue-shift and narrow of the emission band, the enhanced thermal stability, as well as the charge state of Eu2+. Our results provide new insights for explaining the reason for narrow-band-emission in β-SiAlON:Eu, which will deliver an impetus for the exploration of phosphors with narrow band and ordering structure. ? 2017 American Chemical Society.
Subjects
Aluminum; Emission spectroscopy; Light emission; Light emitting diodes; Phosphors; Rigidity; Crystal field strength; Electron-lattice coupling; Electronic transition; Excitation wavelength; Green-emitting phosphors; Higher-order structure; Inhomogeneous broadening; Photoluminescence emission; Europium
Type
journal article