Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Computer Aided Classification System for Breast Ultrasound Based on Breast Imaging Reporting and Data System (BI-RADS)
 
  • Details

Computer Aided Classification System for Breast Ultrasound Based on Breast Imaging Reporting and Data System (BI-RADS)

Journal
Ultrasound in Medicine & Biology
Journal Volume
33
Journal Issue
11
Pages
1688--1698
Date Issued
2007-11
Author(s)
Wei-Chih Shen
Ruey-Feng Chang
Woo Kyung Moon
RUEY-FENG CHANG  
DOI
10.1016/j.ultrasmedbio.2007.05.016
URI
http://scholars.lib.ntu.edu.tw/handle/123456789/331057
Abstract
Clinically, the ultrasound findings are evaluated by its sonographic characteristics and then assigned to assessment categories according to the definitions of Breast Imaging Reporting and Data System (BI-RADS) developed by the American College of Radiology. In this study, a computer-aided classification (CAC) system was proposed to classify the masses into assessment categories 3, 4 and 5, which simulated the clinical diagnosis of radiologists. Compared with current computer-aided diagnosis systems, the proposed CAC system classifies the indeterminate cases into BI-RADS category 4 for further diagnosis. Six hundred twenty-six cases were collected from three ultrasound systems and confirmed by pathology and retrospectively classified into categories 3, 4 and 5 by radiologists. The multinomial logistic regression model was trained as the CAC system for predicting the assessment category from the computerized BI-RADS features and from a set of machine-dependent factors. By using the machine-dependent factors to indicate the adopted ultrasound systems, the same regression model could be applied for the cases acquired from different ultrasound systems. A basic CAC system was trained by using the classification result of radiologists. A weighted CAC system, to improve the capacity of the basic CAC system in differentiating benign from malignant lesions, was trained by adding the pathologic result. Between the radiologists and the basic CAC system, a substantial agreement was indicated by Cohen's kappa statistic and the differences in either the performance indices or the AZ of receiver operating characteristic (ROC) analysis were not statistically significant. For the weighted CAC system, the performance indices accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) were 73.00% (457 of 626), 98.17% (215 of 219), 59.46% (242 of 407), 56.58% (215 of 380) and 98.37% (242 of 246), respectively; the AZ was 0.94; and the correlation with the radiologists was also substantial agreement. The indices accuracy and specificity of weighted CAC system, compared with those of the radiologists, were improved by 5.91% and 8.85%, respectively and the indices of sensitivity and NPV, compared with those of a conventional CAD system, were improved by 10.5% and 5.21%, respectively; all improvements were statistically significant. To classify the mass into BI-RADS assessment categories by the CAC system is feasible. Moreover, the proposed CAC system is flexible because it can be used to diagnose the cases acquired from different ultrasound systems. (E-mail: rfchang@csie.ntu.edu.tw). ? 2007 World Federation for Ultrasound in Medicine & Biology.
Subjects
BI-RADS; Breast cancer; Computer-aided classification (CAC) system; Computer-aided diagnosis (CAD) system; Logistic regression; Ultrasound image
SDGs

[SDGs]SDG3

Other Subjects
Classification (of information); Computer aided analysis; Data reduction; Radiology; Regression analysis; Ultrasonics; Breast cancer; Computer-aided classification (CAC) system; Computer-aided diagnosis (CAD) system; Logistic regression; Radiologists; Ultrasound images; Medical imaging; article; breast cancer; computer assisted diagnosis; diagnostic imaging; echomammography; human; image analysis; imaging system; logistic regression analysis; priority journal; sensitivity and specificity; Adolescent; Adult; Aged; Breast Neoplasms; Diagnosis, Computer-Assisted; Diagnosis, Differential; Epidemiologic Methods; Female; Fibroadenoma; Fibrocystic Breast Disease; Humans; Image Interpretation, Computer-Assisted; Middle Aged; Radiology Information Systems; Ultrasonography, Mammary
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science