Publication:
Cross-domain image-based 3D shape retrieval by view sequence learning

cris.lastimport.scopus2025-05-09T22:44:21Z
cris.virtual.departmentElectrical Engineeringen_US
cris.virtual.departmentCommunication Engineeringen_US
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentComputer Science and Information Engineeringen_US
cris.virtual.departmentMediaTek-NTU Research Centeren_US
cris.virtual.orcid#PLACEHOLDER_PARENT_METADATA_VALUE#
cris.virtual.orcid0000-0002-3330-0638en_US
cris.virtualsource.departmentffaed863-790f-4543-9dee-d11247c29d62
cris.virtualsource.departmentffaed863-790f-4543-9dee-d11247c29d62
cris.virtualsource.departmentffaed863-790f-4543-9dee-d11247c29d62
cris.virtualsource.departmentccf1947d-49ca-4deb-b5a4-b6f0d5fa3fcc
cris.virtualsource.departmentccf1947d-49ca-4deb-b5a4-b6f0d5fa3fcc
cris.virtualsource.departmentccf1947d-49ca-4deb-b5a4-b6f0d5fa3fcc
cris.virtualsource.orcidffaed863-790f-4543-9dee-d11247c29d62
cris.virtualsource.orcidccf1947d-49ca-4deb-b5a4-b6f0d5fa3fcc
dc.contributor.authorLee T.en_US
dc.contributor.authorLin Y.-L.en_US
dc.contributor.authorChiang H.en_US
dc.contributor.authorChiu M.-W.en_US
dc.contributor.authorHsu W.en_US
dc.contributor.authorPOLLY HUANGen_US
dc.creatorHuang P.;Hsu W.;Chiu M.-W.;Chiang H.;Lin Y.-L.;Lee T.
dc.date.accessioned2019-07-10T02:42:22Z
dc.date.available2019-07-10T02:42:22Z
dc.date.issued2018
dc.description.abstractWe propose a cross-domain image-based 3D shape retrieval method, which learns a joint embedding space for natural images and 3D shapes in an end-to-end manner. The similarities between images and 3D shapes can be computed as the distances in this embedding space. To better encode a 3D shape, we propose a new feature aggregation method, Cross-View Convolution (CVC), which models a 3D shape as a sequence of rendered views. For bridging the gaps between images and 3D shapes, we propose a Cross-Domain Triplet Neural Network (CDTNN) that incorporates an adaptation layer to match the features from different domains better and can be trained end-to-end. In addition, we speed up the triplet training process by presenting a new fast cross-domain triplet neural network architecture. We evaluate our method on a new image to 3D shape dataset for category-level retrieval and ObjectNet3D for instance-level retrieval. Experimental results demonstrate that our method outperforms the state-of-the-art approaches in terms of retrieval performance. We also provide in-depth analysis of various design choices to further reduce the memory storage and computational cost. ? 2018 IEEE.
dc.identifier.doi10.1109/3DV.2018.00038
dc.identifier.isbn9781538684252
dc.identifier.scopus2-s2.0-85056780269
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/413042
dc.languageEnglish
dc.relation.ispartof2018 International Conference on 3D Vision, 3DV 2018
dc.relation.pages258-266
dc.subjectImage-based 3D shape retrieval; Triplet loss; View sequence learning
dc.titleCross-domain image-based 3D shape retrieval by view sequence learningen_US
dc.typeconference paper
dspace.entity.typePublication

Files