Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Wettability Effect on Microchannel Condenser Heat Transfer Enhancement
 
  • Details

Wettability Effect on Microchannel Condenser Heat Transfer Enhancement

Date Issued
2012
Date
2012
Author(s)
Chen, Kuei-Yen
URI
http://ntur.lib.ntu.edu.tw//handle/246246/255772
Abstract
In recent years, the microchannel evaporator with two phase heat transfer, due to its highly heat flux and little requirement for coolant flow rate, is considered as one of potential cooling techniques. When the traditional single phase heat exchanger cannot efficiently cool in a limited area, collocating the microchannel condenser with two phase heat transfer is regarded as a potential cooling component. Because of the highly developed technology, the heat dissipation rate raise in many products. Therefore the microchannel condenser with enhanced heat transfer is more applicale. The hydrophobic surface has wide contact angle, and worse wettbility. In the process of condensation it will form dropwise condensation. The heat transfer coefficient is increased dramatically in the large scale condenser within hydrophobic surface. We assume that it will show the same result in the microchannel condenser. Thus, this research design and manufacture the hydrophobic and hydrophilic microchannel condenser, compare to the heat transfer coefficient and pressure drop with uncoated microchannels condenser. The test section has 30 channels 500μm in width and 155μm in depth using water as working fluid. Using layer-by-layer (LbL) assembly method manufacture the hydrophobic and hydrophilic structure the same geometric dimensions microchannel condenser. In the experiment of the uncoated microchannel, the heat transfer coefficient and pressure drop is positive correlative with the increasing mass flux. Because increasing the mass flux, the velocity becomes faster, along with increasing the wall shear stress. This will make the thickness of the liquid film become much thinner, and reduce the heat resistant, further increase the heat transfer coefficient. Compared with the heat transfer correlation of the conventional channel, the result shows the MAE is still large. Currently, there is still much room to make progress on the heat transfer correlation of the microchannels. With regard to the pressure drop, compare with the correlation of micrchannel developed recently, it correlated with our result and shows that our result is reliable. In coated surface, we use layer-by-layer (LbL) assembly method to change the contact angle between water and copper, to manufacture the hydrophobic and hydrophilic structure. The contact angle of the hydrophilic structure change from 87°to 43°. Also the contact angle of the hydrophobic structure rise up to 135°. Compared with the heat transfer coefficient of the uncoated surface, the hydrophobic microchannels can increase roughly 100% on average, with remarkable difference. The droplet cannot adhere on the hydrophobic surface to cause the dropwise condensation. The mechanism is different from the filmwise condensation. Therefore, the heat transfer coefficient is much higher. When the mass flux is small, the heat transfer coefficient doesn’t increase remarkably. Because the velocity is slower, the liquid film is easy to form. Therefore, the mechanism that dropwise condensation could increase the heat transfer coefficient cannot be observed within the small mass flux in this experiment. As increasing the mass flux, the velocity is so fast that is not easy to form the liquid film. This will make the heat transfer coefficient increase remarkably. For the pressure drop, the contact angle of the hydrophilic structure is smaller, and it can extend liquid, making the flow easier. In this experiment the pressure drop decrease about 40% on average. It shows that the hydrophilic structure can greatly improve the pressure drop for the microchannel condenser.
Subjects
microchannel
condensation heat transfer enhancement
hydrophobic and hydrophilic surface
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

index.html

Size

23.49 KB

Format

HTML

Checksum

(MD5):dee73e86d61e5886cd493bbcb1dc3e38

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science