Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling - a case study
 
  • Details

Predictive ability of logistic regression, auto-logistic regression and neural network models in empirical land-use change modeling - a case study

Journal
International Journal of Geographical Information Science
Journal Volume
25
Journal Issue
1
Pages
65-87
Date Issued
2011
Author(s)
YU-PIN LIN  
Chu, H.-J.
Wu, C.-F.
Verburg, P.H.
DOI
10.1080/13658811003752332
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-79951746677&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/365406
Abstract
The objective of this study is to compare the abilities of logistic, auto-logistic and artificial neural network (ANN) models for quantifying the relationships between land uses and their drivers. In addition, the application of the results obtained by the three techniques is tested in a dynamic land-use change model (CLUE-s) for the Paochiao watershed region in Taiwan. Relative operating characteristic curves (ROCs), kappa statistics, multiple resolution validation and landscape metrics were used to assess the ability of the three techniques in estimating the relationship between driving factors and land use and its subsequent application in land-use change models. The validation results illustrate that for this case study ANNs constitute a powerful alternative for the use of logistic regression in empirical modeling of spatial land-use change processes. ANNs provide in this case a better fit between driving factors and land-use pattern. In addition, auto-logistic regression performs better than logistic regression and nearly as well as ANNs. Auto-logistic regression and ANNs are considered especially useful when the performance of more conventional models is not satisfactory or the underlying data relationships are unknown. The results indicate that an evaluation of alternative techniques to specify relationships between driving factors and land use can improve the performance of land-use change models. © 2011 Taylor & Francis.
Subjects
Artificial neural networks; Auto-logistic regression; Empirical land-use change model; Landscape metrics
SDGs

[SDGs]SDG15

Other Subjects
artificial neural network; estimation method; GIS; land use change; model validation; numerical model; prediction; regression analysis; Taiwan
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science