Publication:
Optimization Techniques in Soil Constitutive Model Calibration

dc.contributor指導教授:葛宇甯
dc.contributor臺灣大學:土木工程學研究所zh_TW
dc.contributor.authorChuang, Tsan-Shenen
dc.creatorChuang, Tsan-Shenen
dc.date2014
dc.date.accessioned2014-11-25T15:54:28Z
dc.date.accessioned2018-07-09T22:21:19Z
dc.date.available2014-11-25T15:54:28Z
dc.date.available2018-07-09T22:21:19Z
dc.date.issued2014
dc.description.abstractTraditionally, constitutive model calibration from experimental data is based on the method of linear regression. However, not all constitutive model parameters can be obtained by the method of linear regression. Once these parameters are determined, numerical simulation such as finite element or finite difference analyses can be carried out accordingly. This research used the numerical optimization techniques including DIRECT Optimization Algorithm, Nonlinear Least Squares Method and Genetic Algorithm to evaluate the applicability to constitutive model calibration. The objective function is defined by the distance between the measured and computed data. When a minimum value of the objective function is reached, the corresponding variables are the optimized model parameters. This research used four groups of experimental test results, which are soil triaxial compression tests, rock triaxial compression tests, rock pure shear tests and rock triaxial extension tests. Three constitutive models were used in this study including Duncan and Chang Model, Modified Cam Clay Model and Fuzzy Set Plasticity Model. Genetic Algorithm works effectively in all three constitutive models used in this study. DIRECT Optimization Algorithm works well in calibrating Modified Cam Clay Model and Duncan and Chang Model while Nonlinear Least Squares Method only works in Duncan and Chang Model. In conclusion, Genetic Algorithm works better than DIRECT Optimization Algorithm and Nonlinear Least Squares Method.en
dc.description.tableofcontents目錄 口試委員會審定書 i 誌謝 ii 中文摘要 iii 英文摘要 iv 圖目錄 viii 表目錄 xiii 第一章、 緒論 1 1.1 研究動機 1 1.2 研究目的 1 第二章、 文獻回顧 2 2.1 前人文獻回顧與探討 2 2.2 數值最佳化方法 4 2.2.1 直接最佳化演算法DIRECT Optimization Algorithm 5 2.2.2 非線性最小平方法Nonlinear Least Squares Method 5 2.2.3 基因演算法Genetic Algorithms 6 2.3 組成律模式 7 2.3.1 Duncan and Chang Model 7 2.3.2 Modified Cam Clay Model 9 2.3.3 Fuzzy Set Plasticity Model 11 2.3.3.1 理論 12 2.3.3.2 降伏面 12 2.3.3.3 關聯函數 (membership function) 15 2.3.3.4 塑性流動規則 15 2.3.3.5 參數整理 17 2.3.3.6 Fuzzy Set Plasticity Model公式 18 第三章、 研究方法 36 3.1 研究架構流程 36 3.2 目標函數 36 3.3 實驗數據介紹 38 3.4 最佳化方法相關設定 38 3.4.1 直接最佳化演算法DIRECT Optimization Algorithm 38 3.4.2 非線性最小平方法Nonlinear Least Squares Method 39 3.4.3 基因演算法Genetic Algorithm 40 第四章、 研究結果與討論 49 4.1 Duncan and Chang Model模擬結果 49 4.1.1 直接最佳化演算法 49 4.1.2 非線性最小平方法 50 4.1.3 基因演算法 50 4.2 Modified Cam Clay Model模擬結果 50 4.2.1 直接最佳化演算法 51 4.2.2 非線性最小平方法 51 4.2.3 基因演算法 52 4.3 Fuzzy Set Plasticity Model模擬結果 52 4.3.1 直接最佳化演算法 53 4.3.2 非線性最小平方法 53 4.3.3 基因演算法 54 4.4 多組試驗模擬結果 55 4.5 Duncan and Chang Model於傳統方法與最佳化方法校正之比較 55 第五章、 結論與建議 86 5.1 結論 86 5.2 建議 87 參考文獻 88 附錄 91zh_TW
dc.format.extent8273773 bytes
dc.format.mimetypeapplication/pdf
dc.identifier.urihttp://ntur.lib.ntu.edu.tw//handle/246246/260866
dc.identifier.uri.fulltexthttp://ntur.lib.ntu.edu.tw/bitstream/246246/260866/1/ntu-103-R01521123-1.pdf
dc.languagezh-TW
dc.rights論文公開時間:2015/07/29
dc.rights論文使用權限:同意有償授權(權利金給回饋學校)
dc.subject土壤組成律模式zh_TW
dc.subject最佳化方法zh_TW
dc.subject參數校正zh_TW
dc.subject目標函數zh_TW
dc.subject模式參數zh_TW
dc.titleOptimization Techniques in Soil Constitutive Model Calibrationen
dc.typethesisen
dspace.entity.typePublication

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
ntu-103-R01521123-1.pdf
Size:
23.32 KB
Format:
Adobe Portable Document Format