Openmouthed £E-SiC hollow-sphere with highly photocatalytic activity for reduction of CO2 with H2O
Journal
Applied Catalysis B: Environmental
Journal Volume
206
Pages
158-167
Date Issued
2017
Author(s)
Abstract
A novel hollow spherical 3D structure of £]-SiC with an open mouth was successfully fabricated by an environmentally friendly approach starting from ethylsilicate interaction with the P123 and glucose. The proposed growth mechanism of SiC hollow spheres was revealed step by step with SEM and XRD. When the as-prepared SiC was applied for the photocatalytic reduction of CO2with pure water, it was found to be highly active for the conversion CO2into mainly CH4hydrocarbon products due to its unique electronic structure, hollow morphology and high BET surface area. Moreover, the photocatalytic activity of the hollow spherical SiC can be greatly improved by loading Pt cocatalyst. The optimal 2.0?wt% Pt loading led to a stable CH4evolution as high as 16.8?£gmol/g/h (or 376.4?£gl/g/h) with the simulated solar light irradiation, which is higher than that of many reported metal oxides (Pt/TiO2, CdS/WO3, Zn2GeO4, CeO2and g-C3N4/NaNbO3et al.) under similar experimental conditions. This work provides a new strategy for the architecture of thermally and chemically stable non-metallic carbide with unique hollow spherical structure to be a potential nonmetallic photocatalyst for CO2reduction into CH4. ? 2017 Elsevier B.V.
Subjects
CO2reduction
Hollow spheres
Photocatalysis
£]-SiC
Type
journal article