Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Identifying the species of harvested tuna and billfish using deep convolutional neural networks
 
  • Details

Identifying the species of harvested tuna and billfish using deep convolutional neural networks

Journal
ICES JOURNAL OF MARINE SCIENCE
Journal Volume
77
Journal Issue
4
Pages
1318
Date Issued
2020
Author(s)
Lu, YC
Tung, C
Kuo, YF
YAN-FU KUO  
DOI
10.1093/icesjms/fsz089
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/520871
Abstract
Fish catch species provide essential information for marine resource management. Some international organizations demand fishing vessels to report the species statistics of fish catch. Conventionally, the statistics are recorded manually by observers or fishermen. The accuracy of these statistics is, however, questionable due to the possibility of underreporting or misreporting. This paper proposes to automatically identify the species of common tuna and billfish using machine vision. The species include albacore (Thunnus alalunga), bigeye tuna (Thunnus obesus), yellowfin tuna (Thunnus albacares), blue marlin (Makaira nigricans), Indo-pacific sailfish (Istiophorus platypterus), and swordfish (Xiphias gladius). In this approach, the images of fish catch are acquired on the decks of fishing vessels. Deep convolutional neural network models are then developed to identify the species from the images. The proposed approach achieves an accuracy of at least 96.24%. © International Council for the Exploration of the Sea 2019. All rights reserved.
Subjects
convolutional neural network; deep learning; fish species identification; fishery management; model visualization; transfer learning
SDGs

[SDGs]SDG14

Other Subjects
artificial neural network; finfish; fish; fishery management; fishing vessel; harvesting; identification method; marine resource; tuna fishery; Istiophorus platypterus; Makaira nigricans; Scombridae; Thunnus alalunga; Thunnus albacares; Thunnus obesus; Xiphias gladius; Xiphiidae
Publisher
OXFORD UNIV PRESS
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

2019升等_參考著作4_Fish Identification.pdf

Size

1.49 MB

Format

Adobe PDF

Checksum

(MD5):b29f733fe73e6f5968e37da824611b0d

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science