Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Predicting outcomes after hospitalisation for COPD exacerbation using machine learning.
 
  • Details

Predicting outcomes after hospitalisation for COPD exacerbation using machine learning.

Journal
ERJ open research
Journal Volume
11
Journal Issue
3
Start Page
Article number 00651-2024
ISSN
2312-0541
Date Issued
2025-05
Author(s)
Wu, Chih-Ying
Hsu, Chien-Ning
Wang, Charlotte
JUNG-YIEN CHIEN  
CHI-CHUAN WANG  
FANG-JU LIN  
DOI
10.1183/23120541.00651-2024
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/730626
Abstract
Background Early readmission and death are critical adverse outcomes following hospitalisation due to exacerbation of chronic obstructive pulmonary disease (ECOPD). This study aimed to develop and validate machine learning models to enhance the prediction of these outcomes after ECOPD hospitalisation. Methods Utilising a nationwide database, data from the index ECOPD hospitalisation and the preceding year were collected. Prediction models for 30-day readmission and death were developed using logistic lasso regression, random forest, extreme gradient boosting (XGBoost) and neural network, with the LACE index serving as a reference. Model performance was assessed with receiver operating characteristic (ROC) curves and calibration plots from the validation dataset. Key predictors were identified using SHapley Additive exPlanations. Results The study included 101 011 hospitalisations in the development dataset and 17 565 in the validation dataset. The rates of 30-day readmission and death were 29.1% and 4.3%, respectively. XGBoost outperformed other models, achieving an area under the ROC curve of 0.721 (95% CI 0.713– 0.729) for readmission and 0.809 (95% CI 0.794–0.824) for death, both exceeding the corresponding values for the LACE index (0.651 and 0.641). All machine learning models demonstrated good calibration. The number of hospitalisations in the previous year and the lowest haemoglobin level during the index hospitalisation were the top predictors of readmission and death, respectively. Conclusions Applying machine learning techniques to large-scale data effectively improves the prediction of early readmission and death following ECOPD hospitalisation. Identifying critical prognostic factors could enhance targeted post-discharge care for this high-risk patient group.
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science