Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Controls of climate, topography, vegetation, and lithology on drainage density extracted from high resolution topography data
 
  • Details

Controls of climate, topography, vegetation, and lithology on drainage density extracted from high resolution topography data

Journal
Journal of Hydrology
Journal Volume
537
Date Issued
2016-06-01
Author(s)
Sangireddy, Harish
Carothers, Richard A.
COLIN PETER STARK  
Passalacqua, Paola
DOI
10.1016/j.jhydrol.2016.02.051
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/635736
URL
https://api.elsevier.com/content/abstract/scopus_id/84962339590
Abstract
Mark Melton in 1957 found that climate, basin morphometry, and surficial variables control drainage density (Dd), but differences observed between field surveyed channels and those mapped on topographic contours or blue lines left doubts on these results. Later, several landscape evolution model and observational studies analyzed the behavior of Dd. However, only a few studies have been performed over a large number of landscapes of different characteristics and have relied on high resolution topography data. We revisit Melton's hypothesis by using meter-resolution digital terrain models (DTMs) in 101 subbasins in the USA. We first propose a dimensionless drainage density (Ddd) metric based on the ratio of likely channelized pixels to total number of basin pixels, which has the advantage of eliminating the computation of the channel network. Our analysis shows that Ddd is a weak scaling function of the input DTM resolution compared to the classic dimensional Dd metric (ratio of total channel length to total basin area). We analyze the correlation of Ddd and mean annual precipitation (MAP) with a Gaussian mixture model which identifies two sub-groups displaying different correlation; negative in arid and semi-arid environments, and positive in humid environments. The transition in correlation is around 1100 ± 100 mm/yr of MAP and is accompanied by the occurrence of thick soil layers and high available water capacity that promote dense vegetation cover (Vcov) and low Ddd. While small variation in Ddd is observed across vegetation types, increasing Vcov corresponds to decreasing Ddd. We also explore the relationship between Ddd and relief R, and Ddd and lithology. Ddd and R are weakly correlated in arid and semi-arid environments, while they have strong positive correlation in humid environments. No significant correlation is found between Ddd and lithology although the results are likely affected by our sample choice.
Subjects
Climate | Drainage density | Lidar | Topography
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science