Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. Deep and Convolutional Neural Networks for Acoutic Modeling in Large Vocabulary Continuous Speech Recognition
 
  • Details

Deep and Convolutional Neural Networks for Acoutic Modeling in Large Vocabulary Continuous Speech Recognition

Date Issued
2015
Date
2015
Author(s)
Chou, Po-Wei
URI
http://ntur.lib.ntu.edu.tw//handle/246246/276339
Abstract
在語音辨識中,以深層類神經網路 (deep neural network, DNN) 取代傳統的高斯混合模型 (Gaussian mixture model, GMM) 來建構聲學模型 (acoustic model, AM) 的作法,因其優異的表現已逐漸成為主流。在本論文中,我們以深層類神經網路及卷積類神經網路 (convolutional neural network, CNN) 來產生隱藏式馬可夫模型 (hidden Markov model, HMM) 所需的狀態 (state) 機率,發展出大字彙連續語音辨識 (large-vocabulary continuous speech recognition, LVCSR) 中的聲學模型,在英文的評效語料 (benchmark corpus) 上進行了一系列的實驗。實驗結果顯示不論是深層類神經網路還是卷積類神經網路,其辨識準確率均能大幅地超越傳統基於高斯混合模型的作法,而其中又以深層類神經網路的表現最為出色。 由於不同語者的語音永遠是不一樣的,本文也探討了如何在深層類神經網路的聲學模型架構上,執行語者調適 (speaker adaptation) 以解決受測目標語者 (target speaker) 的語音與訓練語料 (training corpus) 之間不匹配 (mismatch) 的問題。透過對特徵空間上鑑別式線性迴歸 (feature-space discriminative linear regression, fDLR) 的改進,我們提出了一套將隱藏式馬可夫模型的狀態分群 (state-clustered) 的作法,更精細地考慮隱藏式馬可夫模型中各狀態不同的聲學結構,分群進行調適,並透過兩階段的方式進行辨識,提升目標語者的辨識準確度。在一系列的以 Facebook 個人動態 (status) 錄製而成的中英雙語 (bilingual) 語料的實驗中,可以發現不論是少量或是大量的調適語料,運用此方法建立的個人化 (personalized) 聲學模型皆能有相當良好的表現。 此外,我們也實作了一套透過圖形處理器 (graphics processing unit, GPU) 加速的深層類神經網路函式庫。文中除了介紹基本的使用說明以外,也詳細地記載了該程式的軟體架構與設計原理,並探討了圖形處理器上幾個重要的實作細節。
Subjects
Speech Recognition
Large Vocabulary Continuous Speech Recognition
Artificial Neural Network
Deep Neural Network
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R01942135-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):4bf872b8f58d850aea55a1d406ffc9ef

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science