Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Using Synthesized Data to Train Deep Neural Net with Few Data
 
  • Details

Using Synthesized Data to Train Deep Neural Net with Few Data

Journal
ACM International Conference Proceeding Series
Pages
19-25
Date Issued
2020
Author(s)
Chiang C.-S
CHI-SHENG SHIH  
DOI
10.1145/3400286.3418244
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85097441676&doi=10.1145%2f3400286.3418244&partnerID=40&md5=72a466574f05038c615aa4d8eb6f2d72
https://scholars.lib.ntu.edu.tw/handle/123456789/581304
Abstract
As Computer-Assisted Surgery (CAS) getting popular, more and more research has been conducted to help surgeons operate. We aim at the semantic segmentation in the endoscopy surgery scenario because semantic segmentation is the first step for a computer to grasp what shows up in the vision of an endoscope. However, modern Deep Learning algorithms need myriads of training data. Since data of the endoscopy surgery scene is relatively scarce, the performance of existing algorithms is thus rather limited. Therefore, we tried to solve the problem of training a semantic segmentation network with few data in this work. We propose a proof-of-concept system offering the ability to enlarge the dataset and improve the performance. The system aims to synthesize a pair of training data in a single pass and provides a sufficient amount of data to train a network. We evaluated our method using the dataset provided by MICCAI 2018 Robotic Scene Segmentation Sub-Challenge. Our method yielded 11.79% mIoU improvement in recognizing anatomical objects and 2.2% mIoU in recognizing surgical instruments. Recognizing anatomical objects accurately would definitely benefit CAS. Preliminary results suggest our method helps the classifier become more robust and accurate even if not having large amount of data. ? 2020 ACM.
As Computer-Assisted Surgery (CAS) getting popular, more and more research has been conducted to help surgeons operate. We aim at the semantic segmentation in the endoscopy surgery scenario because semantic segmentation is the first step for a computer to grasp what shows up in the vision of an endoscope. However, modern Deep Learning algorithms need myriads of training data. Since data of the endoscopy surgery scene is relatively scarce, the performance of existing algorithms is thus rather limited. Therefore, we tried to solve the problem of training a semantic segmentation network with few data in this work. We propose a proof-of-concept system offering the ability to enlarge the dataset and improve the performance. The system aims to synthesize a pair of training data in a single pass and provides a sufficient amount of data to train a network. We evaluated our method using the dataset provided by MICCAI 2018 Robotic Scene Segmentation Sub-Challenge. Our method yielded 11.79% mIoU improvement in recognizing anatomical objects and 2.2% mIoU in recognizing surgical instruments. Recognizing anatomical objects accurately would definitely benefit CAS. Preliminary results suggest our method helps the classifier become more robust and accurate even if not having large amount of data. © 2020 ACM.
Subjects
Deep learning; Endoscopy; Learning algorithms; Neural networks; Semantics; Surgery; Surgical equipment; Anatomical objects; Computer-assisted surgery; Endoscopy surgery; Proof of concept; Scene segmentation; Semantic segmentation; Surgical instrument; Training data; Deep neural networks
Data Augmentation; Deep Learning; Endoscopy Surgery; Neural Network; Robot-assisted Surgery; Semantic Segmentation
Other Subjects
Deep learning; Endoscopy; Learning algorithms; Neural networks; Semantics; Surgery; Surgical equipment; Anatomical objects; Computer-assisted surgery; Endoscopy surgery; Proof of concept; Scene segmentation; Semantic segmentation; Surgical instrument; Training data; Deep neural networks
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science