Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. Computational modelling of cerebral oedema and osmotherapy following ischaemic stroke
 
  • Details

Computational modelling of cerebral oedema and osmotherapy following ischaemic stroke

Journal
Computers in biology and medicine
Journal Volume
151
Journal Issue
Pt A
Date Issued
2022-12
Author(s)
Chen, Xi
Józsa, Tamás I
STEPHEN JOHN PAYNE  
DOI
10.1016/j.compbiomed.2022.106226
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/627629
URL
https://api.elsevier.com/content/abstract/scopus_id/85141721354
Abstract
In ischaemic stroke, a large reduction in blood supply can lead to the breakdown of the blood brain barrier and to cerebral oedema after reperfusion therapy. Cerebral oedema is marked by elevated intracranial pressure (ICP), tissue herniation and reduced cerebral perfusion pressure. In clinical settings, osmotherapy has been a common practice to decrease ICP. However, there are no guidelines on the choice of administration protocol parameters such as injection doses, infusion time and retention time. Most importantly, the effects of osmotherapy have been proven controversial since the infusion of osmotic agents can lead to a range of side effects. Here, a new Finite Element model of brain oedema and osmotherapy is thus proposed to predict treatment outcome. The model consists of three components that simulate blood perfusion, oedema, and osmotherapy, respectively. In the perfusion model (comprising arteriolar, venous, and capillary blood compartments), an anatomically accurate brain geometry is used to identify regions with a perfusion reduction and potential oedema occurrence in stroke. The oedema model is then used to predict ICP using a porous circulation model with four fluid compartments (arteriolar blood, venular blood, capillary blood, and interstitial fluid). In the osmotherapy model, the osmotic pressure is varied and the changes in ICP during different osmotherapy episodes are quantified. The simulation results of the model show excellent agreement with available clinical data and the model is employed to study osmotherapy under various parameters. Consequently, it is demonstrated how therapeutic strategies can be proposed for patients with different pathological parameters based on simulations.
Subjects
Brain oedema; Finite Element analysis; Ischaemic stroke; Osmotherapy; Porous circulation model
Publisher
PERGAMON-ELSEVIER SCIENCE LTD
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science