Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Applying a Smartwatch to Predict Work-related Fatigue for Emergency Healthcare Professionals: Machine Learning Method
 
  • Details

Applying a Smartwatch to Predict Work-related Fatigue for Emergency Healthcare Professionals: Machine Learning Method

Journal
The western journal of emergency medicine
Journal Volume
24
Journal Issue
4
Start Page
693
End Page
702
Date Issued
2023-07-07
Author(s)
SOT SHIH-HUNG LIU  
Ma, Cheng-Jiun
Chou, Fan-Ya
Cheng, Michelle Yuan-Chiao
CHIH-HUNG WANG  
Duh, Wei-Jou
CHU-LIN TSAI  
CHIEN-HUA HUANG  
Lai, Feipei
TSUNG-CHIEN LU  
DOI
10.5811/westjem.58139
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/636301
URL
https://api.elsevier.com/content/abstract/scopus_id/85166080453
Abstract
Introduction: Healthcare professionals frequently experience work-related fatigue, which may jeopardize their health and put patient safety at risk. In this study, we applied a machine learning (ML) approach based on data collected from a smartwatch to construct prediction models of work-related fatigue for emergency clinicians. Methods: We conducted this prospective study at the emergency department (ED) of a tertiary teaching hospital from March 10–June 20, 2021, where we recruited physicians, nurses, and nurse practitioners. All participants wore a commercially available smartwatch capable of measuring various physiological data during the experiment. Participants completed the Multidimensional Fatigue Inventory (MFI) web form before and after each of their work shifts. We calculated and labeled the before-and-after-shift score differences between each pair of scores. Using several tree-based algorithms, we constructed the prediction models based on features collected from the smartwatch. Records were split into training/ validation and testing sets at a 70∶30 ratio, and we evaluated the performances using the area under the curve (AUC) measure of receiver operating characteristic on the test set. Results: In total, 110 participants were included in this study, contributing to a set of 1,542 effective records. Of these records, 85 (5.5%) were labeled as having work-related fatigue when setting the MFI difference between two standard deviations as the threshold. The mean age of the participants was 29.6. Most of the records were collected from nurses (87.7%) and females (77.5%). We selected a union of 31 features to construct the models. For total participants, CatBoost classifier achieved the best performances of AUC (0.838, 95% confidence interval [CI] 0.742–0.918) to identify work-related fatigue. By focusing on a subgroup of nurses <35 years in age, XGBoost classifier obtained excellent performance of AUC (0.928, 95% CI 0.839–0.991) on the test set. Conclusion: By using features derived from a smartwatch, we successfully built ML models capable of classifying the risk of work-related fatigue in the ED. By collecting more data to optimize the models, it should be possible to use smartwatch-based ML models in the future to predict work-related fatigue and adopt preventive measures for emergency clinicians.
Publisher
eScholarship
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science