Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Biomedical Electronics and Bioinformatics / 生醫電子與資訊學研究所
  4. A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets
 
  • Details

A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets

Journal
Chemical Research in Toxicology
Journal Volume
24
Journal Issue
6
Pages
934-949
Date Issued
2011
Author(s)
Shen, Meng-yu
Su, Bo-Han
Esposito, Emilio Xavier
Hopfinger, Anton J.
YUFENG JANE TSENG  
DOI
10.1021/tx200099j
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-79959469908&partnerID=MN8TOARS
http://scholars.lib.ntu.edu.tw/handle/123456789/362626
Abstract
The human ether-a-go-go related gene (hERG) potassium ion channel plays a key role in cardiotoxicity and is therefore a key target as part of preclinical drug discovery toxicity screening. The PubChem hERG Bioassay data set, composed of 1668 compounds, was used to construct an in silico screening model. The corresponding trial models were constructed from a descriptor pool composed of 4D fingerprints (4D-FP) and traditional 2D and 3D VolSurf-like molecular descriptors. A final binary classification model was constructed via a support vector machine (SVM). The resultant model was then validated using the PubChem hERG Bioassay data set (AID 376) and an external hERG data set by evaluating the model's ability to determine hERG blockers from nonblockers. The external data set (the test set) consisted of 356 compounds collected from available literature data and consisting of 287 actives and 69 inactives. Four different sampling protocols and a 10-fold cross-correlation analysis-used in the validation process to evaluate classification models-explored the impact of the active-inactive data imbalance distribution of the PubChem high-throughput data set. Four different data sets were explored, and the one employing Lipinski's rule-of-five coupled with measures of relative molecular lipophilicity performed the best in the 10-fold cross-correlation validation of the training data set as well as overall prediction accuracy of the external test sets. The linear SVM binary classification model building strategy was applied to different combinations of MOE (traditional 2D, "21/2D", and 3D VolSurf-like) and 4D-FP molecular descriptors to further explore and refine previously proposed key descriptors, identify new significant features that contribute to the prediction of hERG toxicity, and construct the optimal SVM binary classification model from a shrunken descriptor pool. The accuracy, sensitivity, and specificity of the best model determined from 10-fold cross-validation are 95, 90, and 96%, respectively; the overall accuracy is near 87% for the external set. The models constructed in this study demonstrate the following: (i) robustness based upon performance in accuracy across the structural diversity of the training set, (ii) ability to predict a compound's " predisposition" to block hERG ion channels, and (iii) define and illustrate structural features that can be overlaid onto the chemical structures to aid in the 3D structure-activity interpretation of the hERG blocking effect. © 2011 American Chemical Society.
SDGs

[SDGs]SDG3

Other Subjects
human ether a go go related gene; potassium channel; unclassified drug; accuracy; article; bioassay; chemical structure; classification; computer model; high throughput screening; human; lipophilicity; molecular dynamics; molecular model; prediction; protein structure; sampling; sensitivity and specificity; structure activity relation; support vector machine; validation process; Artificial Intelligence; Computer Simulation; Drug Discovery; Ether-A-Go-Go Potassium Channels; Humans; Models, Biological; Models, Molecular; Potassium Channel Blockers; Protein Binding; Quantitative Structure-Activity Relationship
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

A.19 A comprehensive support vector machine binary hERG classification model based on extensive but biased end point hERG data sets.pdf

Size

2.4 MB

Format

Adobe PDF

Checksum

(MD5):c39912d2f608e9aa800adf082f2a0c5c

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science