Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study.
 
  • Details

Application of Machine Learning to Ultrasonography in Identifying Anatomical Landmarks for Cricothyroidotomy Among Female Adults: A Multi-center Prospective Observational Study.

Journal
Journal of imaging informatics in medicine
Journal Volume
37
Journal Issue
1
Start Page
363
End Page
373
ISSN
2948-2933
Date Issued
2024-02
Author(s)
CHIH-HUNG WANG  
Li, Jia-Da
Wu, Yu-Chen
CHENG-YI WU  
JOYCE TAY  
Hsu, Ching-Hang
MENG-CHE WU  
Liu, Yi-Kuan
CHU-SONG CHEN  
CHIEN-HUA HUANG  
DOI
10.1007/s10278-023-00929-3
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/731624
Abstract
We aimed to develop machine learning (ML)-based algorithms to assist physicians in ultrasound-guided localization of cricoid cartilage (CC) and thyroid cartilage (TC) in cricothyroidotomy. Adult female volunteers were prospectively recruited from two hospitals between September and December, 2020. Ultrasonographic images were collected via a modified longitudinal technique. You Only Look Once (YOLOv5s), Faster Regions with Convolutional Neural Network features (Faster R-CNN), and Single Shot Detector (SSD) were selected as the model architectures. A total of 488 women (mean age: 36.0 years) participated in the study, contributing to a total of 292,053 frames of ultrasonographic images. The derived ML-based algorithms demonstrated excellent discriminative performance for the presence of CC (area under the receiver operating characteristic curve [AUC]: YOLOv5s, 0.989, 95% confidence interval [CI]: 0.982-0.994; Faster R-CNN, 0.986, 95% CI: 0.980-0.991; SSD, 0.968, 95% CI: 0.956-0.977) and TC (AUC: YOLOv5s, 0.989, 95% CI: 0.977-0.997; Faster R-CNN, 0.981, 95% CI: 0.965-0.991; SSD, 0.982, 95% CI: 0.973-0.990). Furthermore, in the frames where the model could correctly indicate the presence of CC or TC, it also accurately localized CC (intersection-over-union: YOLOv5s, 0.753, 95% CI: 0.739-0.765; Faster R-CNN, 0.720, 95% CI: 0.709-0.732; SSD, 0.739, 95% CI: 0.726-0.751) or TC (intersection-over-union: YOLOv5s, 0.739, 95% CI: 0.722-0.755; Faster R-CNN, 0.709, 95% CI: 0.687-0.730; SSD, 0.713, 95% CI: 0.695-0.730). The ML-based algorithms could identify anatomical landmarks for cricothyroidotomy in adult females with favorable discriminative and localization performance. Further studies are warranted to transfer this algorithm to hand-held portable ultrasound devices for clinical use.
Subjects
Cricothyroidotomy
Female
Machine learning
Object detection
Ultrasound
Publisher
Springer Nature
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science