Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Using Support Vector Machine and Logistic Regression Methods to Build Groutability Models for Permeation Grouting with Microfine Cement Grout
 
  • Details

Using Support Vector Machine and Logistic Regression Methods to Build Groutability Models for Permeation Grouting with Microfine Cement Grout

Date Issued
2012
Date
2012
Author(s)
Lai, Po-Chou
URI
http://ntur.lib.ntu.edu.tw//handle/246246/248469
Abstract
The purpose of this research is to establish the prediction model of the groutability of the silty sand soils using microfine cement grouts in a permeation grouting. Due to the fact that the region covered in this paper consists of the silty sand soils with relatively higher proportion of the fines content(FC) and the particle size of microfine cement used is considerably smaller than the conventional Portland cement, the existing empirical formula with relative particle size ratio is unable to provide effective predictions. Thus, this research derives the prediction model and formula from 240 data in Taiwan (Taipei and Kaohsiung) using Support Vector Machine(SVM) with Tabu Search(TS) and Logistic Regression(LR), respectively. In terms of selecting factors for the groutability, apart from the relative size for particles passing through soil with 10% and 15% permeability that are used in the conventional empirical formula with relative particle size ratio, this research also takes the fines content(FC) and the water-to-cement ratio(W/C) into account. By using SVM with TS, the model established can reach 97.75% precision of prediction. Moreover, the fine results of groutability prediction, not only indicate the feasibility of applying SVM with TS, but also explain the advantages of SVM in dealing with complicated and non-linear scenarios. In addition, the prediction formula derived from LR shares the same simplicity as in the conventional empirical formula with relative particle size ratio. It is hoped that, since engineers can use this formula with ease, it can also be widely used in applications and real-life constructions.
Subjects
Support Vector Machine(SVM)
Tabu Search algorithm (TS)
Logistic Regression(LR)
microfine cement
permeation grouting
groutability
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-R99622012-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):c4f5054979fa3c366b3cfd1a853d2ffa

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science