Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Optimization and Evaluation of Multi-Detector Deep Neural Network for High Accuracy Wi-Fi Fingerprint Positioning
 
  • Details

Optimization and Evaluation of Multi-Detector Deep Neural Network for High Accuracy Wi-Fi Fingerprint Positioning

Journal
IEEE Internet of Things Journal
Date Issued
2022
Author(s)
Chen C
Lai A.I
Wu P
RUEY-BEEI WU  
DOI
10.1109/JIOT.2022.3147644
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85124176396&doi=10.1109%2fJIOT.2022.3147644&partnerID=40&md5=ce2fc1c5e9a3c745ffabb659f2434b6a
https://scholars.lib.ntu.edu.tw/handle/123456789/632371
Abstract
To fulfill the need for high accuracy indoor positioning in many location-based services (LBS) and the emerging Internet of Things (IoT) applications, in this paper we propose a novel scene-analysis positioning solution of Multi-Detector Deep Neural Network (DNN) architecture, with preprocessing steps, model optimization techniques, and variance estimation methods. During the off-line site-surveying phase in our approach, fingerprint databases are created by purposely built robotic surveying devices traversing the target site to gather perceivable Wi-Fi and other signals including to create spatial positioning models for further use in the online positioning phase. The intricate non-linear relationship between fingerprints and spatial positions are thus resolved by the Multi-Detector DNN in our approach. Hyper-parameter analyses were conducted to further optimize our proposed Multi-Detector model in terms of complexity, achieving at least 6.7 times of parameter complexity reduction while retaining <1% degradation of 0.9m (3ft) positioning accuracy level. IEEE
Subjects
Deep Neural Network; Detectors; Estimation; Feature extraction; Fingerprint recognition; Indoor positioning; Internet of Things; Internet of Things; Model Optimization.; Neural networks; Wi-Fi Fingerprinting; Wireless fidelity
SDGs

[SDGs]SDG9

[SDGs]SDG11

Other Subjects
Complex networks; Deep neural networks; Feature extraction; Indoor positioning systems; Internet of things; Location based services; Surveys; Telecommunication services; Wireless local area networks (WLAN); Features extraction; Fingerprint Recognition; High-accuracy; Indoor positioning; Model optimization; Model optimization.; Multi-detectors; Neural-networks; Wi-fi fingerprinting; Wireless fidelities; Wi-Fi
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science