Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Highly effective nanoparticle removal in plant-based water filters
 
  • Details

Highly effective nanoparticle removal in plant-based water filters

Journal
Environmental Science: Advances
Journal Volume
2
Journal Issue
8
Start Page
1130
End Page
1138
ISSN
27547000
Date Issued
2023
Author(s)
Samineni, Laxmicharan
DeRespino, Sophie
Depaolis, Mekayla
Mohanty, Rashmi P.
YU-MING TU  
Pemmaraju, Sanjana
Velegol, Stephanie
Ghosh, Debadyuti
Kumar, Manish
DOI
10.1039/d3va00035d
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-85132454547&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/721214
Abstract
There is emerging discussion over the advantages of nanotechnology and its prospective risks prompted by increasing reports of nanoparticle (NP) contamination of the environment and its potential impacts on human health. Water treatment facilities are a critical node for exposure to NP contamination but also offer an opportunity for their capture to minimize the exposure. Unfortunately, the typical drinking water treatment train is not suitable for the complete removal of NPs. In fact, the challenges facing the water treatment techniques with the removal of viruses (natural NPs) present a marked example of the energy-water nexus. Any upcoming regulations targeting the control of engineered and incidental NPs are bound to increase the burden on the available techniques. To address this emerging challenge, we established the feasibility of high-efficiency removal of man-made and natural NPs with a depth filter fabricated from plant-based materials. Using high-resolution analytical techniques that enable quick quantification of NP concentration, we showed that cotton fiber functionalized with cationic proteins from Moringa oleifera seeds achieve removals greater than 4 log10 (99.99%) for model nano-plastics and metal nanoparticles. Our results also show that the removals achieved are consistent under a range of pH values and salinities typical to drinking water treatment. The proposed filters in this study show promise as a low-cost and sustainable solution for the capture of NP contamination at loading rates typical to conventional water treatment. © 2023 The Author(s).
Publisher
Royal Society of Chemistry
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science