Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. Query-based music recommendations via preference embedding
 
  • Details

Query-based music recommendations via preference embedding

Journal
RecSys 2016 - Proceedings of the 10th ACM Conference on Recommender Systems
ISBN
9781450340359
Date Issued
2016-09-07
Author(s)
Chen, Chih Ming
Tsai, Ming Feng
Lin, Yu Ching
YI-HSUAN YANG  
DOI
10.1145/2959100.2959169
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/636321
URL
https://api.elsevier.com/content/abstract/scopus_id/84991241982
Abstract
A common scenario considered in recommender systems is to predict a user's preferences on unseen items based on his/her preferences on observed items. A major limitation of this scenario is that a user might be interested in different things each time when using the system, but there is no way to allow the user to actively alter or adjust the recommended results. To address this issue, we propose the idea of "query-based recommendation" that allows a user to specify his/her search intention while exploring new items, thereby incorporating the concept of information retrieval into recommendation systems. Moreover, the idea is more desirable when the user intention can be expressed in different ways. Take music recommendation as an example: the proposed system allows a user to explore new song tracks by specifying either a track, an album, or an artist. To enable such heterogeneous queries in a recommender system, we present a novel technique called "Heterogeneous Preference Embedding" to encode user preference and query intention into low-dimensional vector spaces. Then, with simple search methods or similarity calculations, we can use the encoded representation of queries to generate recommendations. This method is fairly exible and it is easy to add other types of information when available. Evaluations on three music listening datasets confirm the effectiveness of the proposed method over the state-of-the-art matrix factorization and network embedding methods.
Subjects
Heterogeneous preference embedding | Query-based recommendation | Recommender systems
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science