Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Electrochemical Biogas Upgrading: Energy, Environmental, Economic, and Engineering Considerations
 
  • Details

Electrochemical Biogas Upgrading: Energy, Environmental, Economic, and Engineering Considerations

Journal
GCB Bioenergy
Journal Volume
17
Journal Issue
8
Start Page
e70063
ISSN
1757-1693
1757-1707
Date Issued
2025-07-22
Author(s)
Rani, Aishwarya
Negi, Suraj
Chen, Yu‐Ning
Yu, Cheng‐Hsiu
Pan, Shu‐Yuan  
DOI
10.1111/gcbb.70063
URI
https://www.scopus.com/record/display.uri?eid=2-s2.0-105011197556&origin=resultslist
https://scholars.lib.ntu.edu.tw/handle/123456789/734231
Abstract
Biogas, a renewable energy source produced from the anaerobic digestion of biomass and/or organic residues, contains a mixture of methane (CH4) and carbon dioxide (CO2). To be used as a fuel, biogas must be upgraded to increase its CH4 content to over 90%. Traditional upgrading methods, such as amine scrubbing and membrane separation, are energy-intensive, costly, and environmentally burdensome. This study explores the potential of electrochemical technologies as sustainable alternatives for biogas upgrading from the aspects of energy, environment, economics, and engineering. Recent advances in promising electrochemical approaches including pretreatment, microbial conversion enhancement, CO2 capture, CO2 reduction reactions, and methanation are first reviewed. The performance of these approaches is then systematically compared based on operational characteristics and efficiency metrics. Our findings indicate that microbial and bioelectrochemical systems can achieve CH4 purities over 92%. Also, electrochemical technologies offer > 99.9% hydrogen sulfide removal (desulfurization). State-of-the-art electrochemical CO2 reduction technologies demonstrate Faradaic efficiencies generally 50%–80%, with the selectivity of CH4 up to 99.7%. From the environmental aspect, integrating renewable electricity into microbial, electrochemical (or -based), and bioelectrochemical upgrading systems yields roughly 10%–74% life-cycle GHG reductions relative to conventional fossil-energy pathways, with certain renewable power-to-methane configurations achieving net-negative emissions. Lastly, this study identifies several priority research directions, such as (1) advanced catalyst and electrode development, (2) system integrations with air pollutant control facilities, (3) life-cycle environmental and techno-economic assessment, and (4) digestate valorization for multiple product ecosystems. Electrochemical approaches offer a promising path toward clean, efficient, and decentralized biogas utilization, contributing to global decarbonization and energy transition goals toward a circular bioeconomy.
Subjects
biogas upgrading
carbon dioxide
catalyst
decarbonization
digestate
electrochemistry
life-cycle assessment
methane
microbial electrochemical technology
SDGs

[SDGs]SDG7

[SDGs]SDG8

[SDGs]SDG9

[SDGs]SDG12

[SDGs]SDG13

Publisher
Wiley
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science