Growth and optical properties of Indium Nitride nanowires
Date Issued
2006
Date
2006
Author(s)
Lin, Chih-Hsiang
DOI
en-US
Abstract
One-dimensional nanostructures, such as nanowires and nanobelts, have attracted great attention because of their peculiar optical, electrical and mechanical properties. 1D nanostructures illustrate the smallest dimension structure that can be efficiently transport electrical carriers, and thus are ideally suited to the critical and ubiquitous task of moving charges in integrated nanoscaled system. Second, 1D nanostructures can also exhibit device function, and thus can be exploited as both the wiring and device elements in architectures for functional nanosystems.
Indium nitride (InN), with its wurtzite crystal structure and 0.7 eV direct band gap, is a promising III-V compound semiconductor for high-frequency and high-speed devices and optical communication. In this study, indium nitride various kinds of nanostructures were successfully grown on Si substrate using a simple resistive heated MOCVD system by utilizing a pyrolytic boron nitride heater. Structure studied by x-ray diffraction (XRD) spectra and Raman spectrometer and high resolution electron microscope (HRTEM) measurement revealed that single crystalline of indium nitride (InN) nanostructure. The scanning electron microscope (SEM) investigations on the indium nitride (InN) nanostructure show a surface morphology .On the other hand, using the infrared ray photo-luminescence (IR-PL) measurement system, when the PL spectrum at 15 K showed a main emission peak at 0.77 eV and another peak at 0.75 eV, with a 20 meV interval. Temperature-dependent PL measurements indicated a 20 meV-deep donor level in the InN nanowires. After surface modification, the recombination rates are increased. And for PL spectra, we also can see the enhancement of intensities. And Increased the quantum yield require the elimination of midgap surface states, and the band edge emission appear unaltered.
Subjects
氮化銦
InN
Type
thesis
File(s)![Thumbnail Image]()
Loading...
Name
ntu-95-R93941033-1.pdf
Size
23.31 KB
Format
Adobe PDF
Checksum
(MD5):c0612abf258dd11232e3927fc268a05f
