Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Communication Engineering / 電信工程學研究所
  4. Unsupervised Spoken Term Detection with Spoken Queries
 
  • Details

Unsupervised Spoken Term Detection with Spoken Queries

Date Issued
2012
Date
2012
Author(s)
Chan, Chun-an
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252580
Abstract
Unsupervised spoken term detection (STD) with spoken queries is a new and important topic in multimedia retrieval. The unsupervised approaches without the need of annotated data bypass various problems in speech recognition particularly the recognition errors under different acoustic and linguistic conditions. Such approaches even make searching for spoken terms possible in low-resourced languages or languages without writing system. In this dissertation, we propose several techniques to solve the problem of unsupervised STD problem with spoken queries. We propose two improved DTW-based approaches to handle the speaking rate distortion and computation efficiency issues in the conventional segmental DTW approach. The Slope-Constrained Dynamic Time Warping (SC-DTW) approach is developed to handle the speaking rate distortion problem. The segment-based DTW approach is devised to reduce the computational burden. The concatenation of these two approaches and the Weighted Pseudo Similarity of SC-DTW approach in the Pseudo Relevance Feedback (PRF) framework show significant improvement on both detection and efficiency performances. We also propose two model-based approaches for unsupervised STD. We design procedures to construct a set of Acoustic Segment Models (ASMs) that describes the patterns and structures of the target language. In this way, the signal trajectory modeling techniques can be leveraged using the ASMs. Using the ASMs, we propose the Document State Matching (DSM) approach to match spoken queries to the ASM states in the documents. The Duration-Constrained Viterbi algorithm is developed in the DSM approach. Another Pseudo Likelihood Ratio approach is proposed to verify the hypotheses in the PRF framework. Experimental results show that the model-based approaches achieve comparable detection performances in much smaller computation time. Our attempt of migrating from DTW-based approaches to model-based approaches creates the possibilities of leveraging well-developed model-based speech processing techniques in unsupervised STD. Finally, we tested various approach integration configurations in our system. With the combined model-based and DTW-based approaches, a 14.2\% of absolute Mean Average Precision improvement was achieved using only 23\% of CPU time on the Mandarin broadcast news corpus.
Subjects
spoken term detection
information retrieval
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-101-F95942047-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):deaef7a13c7aa2449c1d73466f289672

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science