POSTER: Context-aware web security threat prevention
Journal
ACM Conference on Computer and Communications Security
Pages
992-994
ISBN
9781450316507
Date Issued
2012
Author(s)
Abstract
This paper studies the feasibility of an early warning system that prevents users from the dangerous situations they may fall into during web surfing. Our approach adopts behavioral Hidden Markov Models to explore collective intelligence embedded in users' browsing behaviors for context-aware category prediction, and applies the results to web security threat prevention. Largescale experiments show that our proposed method performs accuracy 0.463 for predicting the fine-grained categories of users' next accesses. In real-life filtering simulations, our method can achieve macro-averaging blocking rate 0.4293 to find web security threats that cannot be detected by the existing security protection solutions at the early stage, while accomplishes a low macro-averaging over-blocking rate 0.0005 with the passage of time. In addition, behavioral HMM is able to alert users for avoiding security threats by 8.4 hours earlier than the current URL filtering engine does. Our simulations show that the shortening of this lag time is critical to avoid severe diffusions of security threats. Copyright ? 2012 ACM.
Subjects
Collaborative filtering
Collective intelligence
Security assurance
Type
conference paper
