Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. The effect of cavity geometry on the nucleation of bubbles from cavities
 
  • Details

The effect of cavity geometry on the nucleation of bubbles from cavities

Journal
Journal of the Acoustical Society of America
Journal Volume
121
Journal Issue
2
Pages
853-862
Date Issued
2007
Author(s)
Chappell M.A.
Payne S.J.
STEPHEN JOHN PAYNE  
DOI
10.1121/1.2404629
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-33846695417&doi=10.1121%2f1.2404629&partnerID=40&md5=7a557c190abc826cfdfe11cc30bd4e46
https://scholars.lib.ntu.edu.tw/handle/123456789/611856
Abstract
The heterogeneous nucleation of gas bubbles from cavities in a surface in contact with a liquid is a widely recognized phenomenon. This process has previously been theoretically analyzed extensively for a conical crevice, although in practice a wide range of cavity geometries might be expected. The method of analysis originally presented by Atchley and Prosperetti [J. Acoust. Soc. Am. 86, 1065-1084 (1989)] for the unstable growth of a gas-liquid interface in a conical crevice is here extended to any axisymmetric cavity geometry and four such different geometries are analyzed. Although the method presented neglects gas transfer, and therefore is most directly suitable for acoustic cavitations, this method is still valuable in comparing the nucleation behavior of different cavity types. It is found that once the interface has emerged outside the cavity, its behavior is determined by the size of the cavity's opening. Given that the behavior of the interface once it is outside the cavity will also be determined by the local flow conditions, the threshold for unstable growth of the interface inside the cavity leading to its emergence is the important value and will determine differences between cavity geometries in practice, as shown in the examples presented. ? 2007 Acoustical Society of America.
Subjects
Acoustic noise
Bubble formation
Cavitation
Nucleation
Phase interfaces
Cavity geometries
Cavity geometry
Cavity types
Gas liquid interface
Bubbles (in fluids)
acoustics
article
contact angle
gas diffusion
gas flow
geometry
liquid
molecular dynamics
particle size
priority journal
theoretical study
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science