Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Life Science / 生命科學院
  3. Life Science / 生命科學系
  4. Immunostimulatory Effect of CpG Oligodeoxynucleotide in Grouper and its Application in the Development of Anti-iridovirus Vaccine
 
  • Details

Immunostimulatory Effect of CpG Oligodeoxynucleotide in Grouper and its Application in the Development of Anti-iridovirus Vaccine

Date Issued
2015
Date
2015
Author(s)
Chuang, Hsiang-Chieh
URI
http://ntur.lib.ntu.edu.tw//handle/246246/272427
Abstract
The induction of the innate immunity depends on whether the immune cells can effectively recognize specific structures called pathogen-associated molecular patterns (PAMPs) on the pathogens. The immune cells mainly employ a specific receptor, pattern-recognition receptor (PRR), to recognize the PAMPs and stimulate the host immune response. The orange-spotted grouper (Epinephelus coioides) has two TLR9 isoforms, namely gTLR9A and gTLR9B, which are formed via alternative splicing. The main difference between them is that in gTLR9B, the box3 structure is absent in the TIR domain of the C-terminus. Studies have found that CpG oligodeoxynucleotides (ODNs) can induce the production of IL-1β via the TLR9 signaling pathway. The binding of gTLR9A with a CpG ODN was followed by co-localization with the adaptor protein, gMyD88, and subsequent recruitment of the downstream IRAK4 and TRAF6. In contrast, gTLR9B binds to a CpG ODN but cannot recruit the downstream IRAK4 and TRAF6 after binding gMyD88. A further study also found that gTlr9A and gTlr9B possessed a differential expression profiles in a time-dependent manner after stimulated by CpG ODN. Therefore, it was speculated that gTLR9B played the role of a negative regulator. The innate immune response is triggered after the recognition of CpG ODN by TLR9, and a class A ODN can stimulate the maturation of plasmacytoid dendritic cells and induce the secretion of IFNα. Hence, this study aimed at modifying the structure of a class A ODN to investigate the corresponding effects. The results from the in vitro experiments have confirmed that the modification of the central palindromic sequence, phosphorothioate, and 3’-end poly-G tail structure, affected the expression level of IL-1β. The structural changes of a class A ODN can also affect the phagocytic activity of macrophages and the action of the intracellular superoxide anion. Besides, this study also found that both gTLR9A and gTLR21 could specifically bind to a CpG ODN or GpG ODN. When compared with mammals, gTLR9A and gTLR21 were less stringent in recognizing different ODN motifs. The in vivo experiments indicated that class A ODN 1966 was most effective in inducing the expression of IL-1β. Furthermore, both in vitro and in vivo experiments showed that class A ODN 1966 was the most effective in inducing the expression of IL-1β. In this study, a synthetic CpG ODN was used as an adjuvant to further explore its effect and mechanism in the immune function of the orange-spotted grouper. Orange-spotted groupers were re-immunized with the inactivated Grouper Iridovirus (iGIV) vaccines in combination with the immunoadjuvant ODN 1966. The toxicity test using different doses of virus showed that after injecting the iGIV vaccine alone or the iGIV vaccine in combination with different doses of the ODN adjuvant, the mortality rate in the Grouper Iridovirus group was significantly reduced compared with that of the PBS group, in a dose-dependent manner. The analysis of the expression levels of the MCP gene and genomic DNA of the Grouper Iridovirus also showed a decrease in a dose-dependent manner, indicating that the co-immunization of orange-spotted groupers with the vaccine in combination with the ODN adjuvant significantly reduced mortality (a result of Grouper Iridovirus infection) as well as the viral load in the fish. The results in this study also showed that the iGIV vaccine could enhance the antibody titers after immunization of the groupers while the supplementation of ODN adjuvant at a low dose could further enhance the antibody titers of iGIV vaccine. However, excessive dosage of the ODN adjuvant would result in opposite effects, which might be related to the ODN-mediated induction of other immune responses at high concentrations. A further analysis of the expression of immune-related genes revealed that in addition to the induction of innate immune genes, such as gTLR9A, gIL-1β, gTNF-α, and gMX, on the first day after immunization, antibodies were produced on the seventh day after immunization. Additionally, the gCD4 and gCD8 genes were highly expressed on the 14th day after immunization with the iGIV vaccine, while an opposite result was obtained for gT-bet and gGATA3 genes on the seventh and 14th day after immunization in the tendency to induce the Th1 response pathway. Experimental results showed that the supplementing the iGIV vaccine with the ODN adjuvant in an appropriate amount could significantly reduce the mortality caused by the viral infection and improve the immune efficacy via early immunization with the inactivated virus vaccine. It could also effectively reduce the viral load in the fish and further enhance specific antibody titers. Furthermore, iGIV vaccine was found to induce the expression of innate immunity genes, and it might also induce cell apoptosis and involve antibodies in the antiviral responses after immunization. The above-mentioned points support the anti-viral efficacy of iGIV vaccines used in this study and the feasibility of supplementing the iGIV vaccine with a CpG ODN adjuvant for the immunization of the orange-spotted grouper.
Subjects
TLR9
TLR21
Iridovirus
iGIV vaccine
adjuvant
CpG ODN
SDGs

[SDGs]SDG3

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-D97b41004-1.pdf

Size

23.32 KB

Format

Adobe PDF

Checksum

(MD5):30d35f7a6fe266b599989e1c4eb125ce

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science