Publication:
DON'T SPEAK TOO FAST: THE IMPACT OF DATA BIAS ON SELF-SUPERVISED SPEECH MODELS

cris.lastimport.scopus2025-05-13T22:37:23Z
cris.virtual.departmentElectrical Engineeringen_US
cris.virtual.departmentIntel-NTU Connected Context Computing Centeren_US
cris.virtual.departmentCommunication Engineeringen_US
cris.virtual.departmentComputer Science and Information Engineeringen_US
cris.virtual.departmentNetworking and Multimediaen_US
cris.virtual.departmentCenter for Artificial Intelligence and Advanced Roboticsen_US
cris.virtual.departmentMaster's Program in Smart Medicine and Health Informatics (SMARTMHI)en_US
cris.virtual.orcid0000-0002-9654-5747en_US
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.department0897e0f8-f71a-40d3-a313-62f0c81793df
cris.virtualsource.orcid0897e0f8-f71a-40d3-a313-62f0c81793df
dc.contributor.authorMeng, Yenen_US
dc.contributor.authorChou, Yi Huien_US
dc.contributor.authorLiu, Andy T.en_US
dc.contributor.authorHUNG-YI LEEen_US
dc.date.accessioned2023-04-20T10:05:07Z
dc.date.available2023-04-20T10:05:07Z
dc.date.issued2022-01-01
dc.description.abstractSelf-supervised Speech Models (S3Ms) have been proven successful in many speech downstream tasks, like ASR. However, how pretraining data affects S3Ms' downstream behavior remains an unexplored issue. In this paper, we study how pre-training data affects S3Ms by pre-training models on biased datasets targeting different factors of speech, including gender, content, and prosody, and evaluate these pre-trained S3Ms on selected downstream tasks in SUPERB Benchmark. Our experiments show that S3Ms have tolerance toward gender bias. Moreover, we find that the content of speech has little impact on the performance of S3Ms across downstream tasks, but S3Ms do show a preference toward a slower speech rate.en_US
dc.identifier.doi10.1109/ICASSP43922.2022.9747897
dc.identifier.isbn9781665405409
dc.identifier.issn15206149
dc.identifier.scopus2-s2.0-85133024721
dc.identifier.urihttps://scholars.lib.ntu.edu.tw/handle/123456789/630389
dc.identifier.urlhttps://api.elsevier.com/content/abstract/scopus_id/85133024721
dc.relation.ispartofICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedingsen_US
dc.relation.journalvolume2022-Mayen_US
dc.relation.pageend3262en_US
dc.subjectData Bias | Self-supervised Speech Models | SUPERB Benchmarken_US
dc.titleDON'T SPEAK TOO FAST: THE IMPACT OF DATA BIAS ON SELF-SUPERVISED SPEECH MODELSen_US
dc.typeconference paper
dspace.entity.typePublication

Files

License bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: