Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Engineering Science and Ocean Engineering / 工程科學及海洋工程學系
  4. Applying Machine Learning on Prediction of RNA-Binding Residues in Proteins
 
  • Details

Applying Machine Learning on Prediction of RNA-Binding Residues in Proteins

Other Title
應用機器學習方法預測核糖核酸與蛋白質結合位置
Date Issued
2010
Date
2010
Author(s)
邱莉媛 
URI
http://ntur.lib.ntu.edu.tw//handle/246246/252549
Abstract
RNA-binding proteins (RBPs) are vital for recognition sequences of ribonucleic acids, which is the genetic material that is derived from the DNA. For satisfying diverse functional requirements, RNA binding proteins are composed of multiple repeated blocks of RNA-binding domains presented in various structural arrangements to provide versatile functions. The ability to predict computationally RNA-binding residues in a RNA-binding protein can help biologists to have clues on site-directed mutagenesis in wet-lab experiments. “ProteRNA” is the proposed prediction framework in this thesis, combining Support Vector Machine (SVM) and WildSpan for identifying RNA-interacting residues in a RNA-binding protein. SVM utilizes PSSM and protein secondary structure information to predict, while WildSpan bases on conserved domain information. The performances of SVM predictor are F-score of 0.5127; however, the performances of the WildSpan hybrid predictor achieve F-score of 0.5362. In the independent testing dataset, ProteRNA has been able to deliver overall accuracy of 89.55 %, MCC of 0.2686, and F-score of 0.3185. ProteRNA surpasses the other web servers no matter in terms of accuracy, MCC, or F-score.
Subjects
Machine Learning
Support Vector Machine
RNA Binding Residues Prediction
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-99-R97525034-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):b0cb1d39148021b1996dd44693403da6

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science