Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. National Taiwan University Hospital / 醫學院附設醫院 (臺大醫院)
  4. Deep Learning-Based Electrocardiogram Model (EIANet) to Predict Emergency Department Cardiac Arrest: Development and External Validation Study.
 
  • Details

Deep Learning-Based Electrocardiogram Model (EIANet) to Predict Emergency Department Cardiac Arrest: Development and External Validation Study.

Journal
Journal of medical Internet research
Journal Volume
27
ISSN
1438-8871
Date Issued
2025-02-28
Author(s)
Lu, Shao-Chi
Chen, Guang-Yuan
Liu, An-Sheng
Sun, Jen-Tang
Gao, Jun-Wan
CHIEN-HUA HUANG  
CHU-LIN TSAI  
LI-CHEN FU  
DOI
10.2196/67576
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/726016
Abstract
Background: In-hospital cardiac arrest (IHCA) is a severe and sudden medical emergency that is characterized by the abrupt cessation of circulatory function, leading to death or irreversible organ damage if not addressed immediately. Emergency department (ED)–based IHCA (EDCA) accounts for 10% to 20% of all IHCA cases. Early detection of EDCA is crucial, yet identifying subtle signs of cardiac deterioration is challenging. Traditional EDCA prediction methods primarily rely on structured vital signs or electrocardiogram (ECG) signals, which require additional preprocessing or specialized devices. This study introduces a novel approach using image-based 12-lead ECG data obtained at ED triage, leveraging the inherent richness of visual ECG patterns to enhance prediction and integration into clinical workflows. Objective: This study aims to address the challenge of early detection of EDCA by developing an innovative deep learning model, the ECG-Image-Aware Network (EIANet), which uses 12-lead ECG images for early prediction of EDCA. By focusing on readily available triage ECG images, this research seeks to create a practical and accessible solution that seamlessly integrates into real-world ED workflows. Methods: For adult patients with EDCA (cases), 12-lead ECG images at ED triage were obtained from 2 independent data sets: National Taiwan University Hospital (NTUH) and Far Eastern Memorial Hospital (FEMH). Control ECGs were randomly selected from adult ED patients without cardiac arrest during the same study period. In EIANet, ECG images were first converted to binary form, followed by noise reduction, connected component analysis, and morphological opening. A spatial attention module was incorporated into the ResNet50 architecture to enhance feature extraction, and a custom binary recall loss (BRLoss) was used to balance precision and recall, addressing slight data set imbalance. The model was developed and internally validated on the NTUH-ECG data set and was externally validated on an independent FEMH-ECG data set. The model performance was evaluated using the F1-score, area under the receiver operating characteristic curve (AUROC), and area under the precision-recall curve (AUPRC). Results: There were 571 case ECGs and 826 control ECGs in the NTUH data set and 378 case ECGs and 713 control ECGs in the FEMH data set. The novel EIANet model achieved an F1-score of 0.805, AUROC of 0.896, and AUPRC of 0.842 on the NTUH-ECG data set with a 40% positive sample ratio. It achieved an F1-score of 0.650, AUROC of 0.803, and AUPRC of 0.678 on the FEMH-ECG data set with a 34.6% positive sample ratio. The feature map showed that the region of interest in the ECG was the ST segment. Conclusions: EIANet demonstrates promising potential for accurately predicting EDCA using triage ECG images, offering an effective solution for early detection of high-risk cases in emergency settings. This approach may enhance the ability of health care professionals to make timely decisions, with the potential to improve patient outcomes by enabling earlier interventions for EDCA.
Subjects
cardiac arrest
computer vision
deep learning
electrocardiogram
emergency department
SDGs

[SDGs]SDG3

Publisher
JMIR Publications Inc.
Description
Article number e67576
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science