Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Materials Science and Engineering / 材料科學與工程學系
  4. Dual-phase solid-liquid interdiffusion bonding, a solution for the die attachment of WBG
 
  • Details

Dual-phase solid-liquid interdiffusion bonding, a solution for the die attachment of WBG

Journal
14th International Conference on Electronic Materials and Packaging, EMAP 2012
Date Issued
2012
Author(s)
Chang, T.-C.
Chang, J.-Y.
Chuang, T.-H.
Lo, W.-C.
TUNG-HAN CHUANG  
DOI
10.1109/EMAP.2012.6507922
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/491983
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84880259442&doi=10.1109%2fEMAP.2012.6507922&partnerID=40&md5=de45efe47a17172f1a7b5b4f141821d1
Abstract
Wide band gap (WBG) semiconductors such as SiC and GaN devices are expected to replace Si power devices in the next generation power modules for renewable energy and smart grid to enhance their energy conversion efficiency through a characteristic of high frequency switching. However, the temperature of the WBG power module may reach 250°C as operating, which is much higher than the melting temperatures of the conventional solder materials like Sn37Pb (187°C), Sn3.0Ag0.5Cu (217°C) and Sn0.7Cu (227°C). Therefore, a new die attaching method is an urgent research subject for the assembly of WBG power modules. Sandia National Laboratories won the R&D 100 award in 2009 by the world's first full SiC module, in which the die attaching of SiC devices was accomplished by a transition liquid phase (TLP) method, 2 intermetallic phases including Ag3Sn and Ni3Sn4 were formed to bond SiC devices on a direct bond aluminum (DBA) and mount the DBA on a metal matrix composite baseplate, respectively, and the power module was capable to operate under a condition in excess of 400°C. Subsequently, Infineon announced a power chip embedded technology named BLADE for renewable energy applications in 2011, a same process so-called diffusion soldering was used to attach Si MOSFET device on an organic carrier by producing an intermetallic layer like Cu 6Sn5 between them. However, some disadvantages have been found in the previous cases. First, the bonding time is too long to achieve a high throughput production when the process temperature is lower than 300°C, whatever, the power ICs are easily damaged when the process temperature is as high as 350°C. Second, the intermetallic joint might degrade due to the voids induced by a volume contraction as heated. Third, there are some defects such as Kirkendall voids are formed at the interface between different intermetallics, which significantly impacts the reliability performance of the joint. A dual-phase solid-liquid interdiffusion bonding process was developed to solve the above-mentioned issues in this study. By the elemental design of the electrode compositions on both chip and substrate, a dual-phase intermetallic joint was formed to attach the chip on the substrate, and the bonding temperature was decreased to just 260°C. Furthermore, almost no void was found within the joint because they were rapidly stuffed by the formation of secondary intermetallic. The shear strength of the intermetallic joint was measured being higher than 20 MPa, even though experienced a temperature cycling test (Condition B, JESD22-A104), meaning that the new bonding technology was reliable and capable of manufacturing WBG power modules. © 2012 IEEE.
SDGs

[SDGs]SDG7

Other Subjects
Bonding temperatures; Electrode composition; High-frequency switching; Interdiffusion bonding; Reliability performance; Renewable energy applications; Sandia National Laboratories; Temperature cycling tests; Electric power systems; Energy conversion; Metallic matrix composites; MOSFET devices; Silicon; Silicon carbide; Soldering; Soldering alloys; Tin; Intermetallics
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science