Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Environmental Engineering / 環境工程學研究所
  4. The Effects of Hydrological Processes, Biogeochemistry and Human Activities in the Watershed on Phosphorus Mass Balance and the Subsequent Growth of Predominant Algal Species: A Case Study on the Subtropical and Deep Reservoirs in Taiwan
 
  • Details

The Effects of Hydrological Processes, Biogeochemistry and Human Activities in the Watershed on Phosphorus Mass Balance and the Subsequent Growth of Predominant Algal Species: A Case Study on the Subtropical and Deep Reservoirs in Taiwan

Date Issued
2004
Date
2004
Author(s)
Chen, Yi-Jing
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/62603
Abstract
Recently, the concentrations of total phosphorus (TP) in the reservoirs in Taiwan have increased at a rate sufficient to cause public concern. The understanding of the mechanisms and factors influencing both the external and internal P input in the reservoir is needed. The objective of this research was to evaluate the integrated effect of hydrological processes, biogeochemical processes of P and the human activities in the watershed on the fate of P in the reservoir. The study areas include both the Techi Reservoir and Feitsui Reservoir, respectively. The chemical P fractionation and geochemical simulations in the sediments and surface water were used to clarify the speciation of P forms in order to verify the source of P in the watershed. The results showed that the distribution of P forms in the sediments in Feitsui Reservoir had been affected by the Ca or Ca bound P export from the debris from tunnel construction and groundwater inflow in the watershed, subsequently influencing the chemical composition of porewater and the internal loads of P. Dissolved organic P in the surface runoff from the Techi watershed, accounting for 30 % of TP, was the major source of P serving for the prosperity of the dominant algal species, Peridinium spp., in the surface water. A sediment P transport model (2 Box-Sediment Phosphorus Transport and Flux Model, 2B-SEPF), which considers the sediment water interaction (vertical turbulent diffusion, overlying water temperature difference, overlying dissolved oxygen difference), microbial reaction and precipitation-dissolution dynamics of P minerals, has been developed and verified. The predicted internal dissolved total phosphorus (DTP) loads was almost equal to the external DTP loads in Feitsui Reservoir, a subtropical and deep reservoir. However, the water quality simulation results by CE-QUAL-W2 model revealed that the hydrologically induced density currents in winter together with the external loads of P were the main cause of the surface water quality deterioration, even though the bottom water carrying abundant P internal loads might be lifted to the middle layer by the water momentum force by the density current. The apparatus of the in-situ tracer experiment integrated with a submerged video camera was developed in this study. The estimated vertical turbulent diffusion coefficient,εz , at the sediment water interface with a depth of 85m at dam in Feitsui Reservoir was in the range of 0.3-2.5 cm2/sec. It makes the prediction of the sediment P flux more accurately. The spatial and temporal variations of the suspended solids (SS) brought in by the turbidity currents were also used to estimate the horizontal and vertical dispersion coefficients in the reservoir by applying the Gaussian distribution theory. They were useful for predicting the hydrodynamics and transport of P in the reservoir. In summary, the integrated sediment–water simulated model (2B-SEPF and CE-QUAL-W2 model) could be a useful tool to predict the fate of P in the reservoir with complex hydrological problems like density currents. The chemical P fractionation and geochemical simulations techniques could be used to clarify the effects of human activities on the biogeochemical processes of P and the linkage of P species with the speciation of algae. They are also useful for the BMP management in the watershed and the downstream water treatment planning for public health.
Subjects
密度流
生物地質化學作用
紊流擴散係數
底泥
水庫
水質模式
藻類
質量平衡
磷
sediments
reservoir
biogeochemical processes
density currents
water quality model
mass balance
turbulent diffusion coefficient
algae
Phosphorus
SDGs

[SDGs]SDG3

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-93-D87541003-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):eb8393ec110ffd20ef9fd33db0ea4a75

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science