Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Food Science and Technology / 食品科技研究所
  4. Morphology and encapsulation of media milled cellulose after spray drying
 
  • Details

Morphology and encapsulation of media milled cellulose after spray drying

Date Issued
2015
Date
2015
Author(s)
Luo, Shao-Jyun
URI
http://ntur.lib.ntu.edu.tw//handle/246246/273964
Abstract
The change in particle morphology has resulted in variations of physicochemical properties and functions. Spray drying is a method to fabricate particles with a controllable size and morphology. During solvent evaporation, colloidal particles were self-assembled inside the droplet toward a close-packed array. With different particle sizes, which is one of the factors aggregating final particle morphology. In our laboratory, spherical cellulose particles have been prepared by utilizing media milling and spray drying. This study was to investigate the effect milling time on morphology and media-milled and spray dried cellulose, its encapsulation efficiency for b-carotene was also evaluated. 5% (w/w) microcrystalline cellulose was media milled for 15, 30, 45 and 90 minutes, and successively was spray dried at 130℃. The data showed that the particle size was decreased as the milling time increased. It appeared that, smaller particles particularly nano/submicron particle were prone to aggregate under the condition of nano/submicron scale particle size. Scanning electron micrograph, the spray dried cellulose powder from 15 min media-milled cellulose exhibited has highly rough surface. When the media milling time increased, the percentages of nano/submicron particles were increased. And the surface spray dried powder became smoother; with a decrease in apparent density and surface area. Data of porosity and density showed that the spray dried cellulose powders were dense particles. Obviously, raw cellulose would not the alike encapsulate b-carotene (encapsulation efficiency of 2.52%). The encapsulation efficiency of media-milled cellulose for 15, 30, 45 and 90 were 19.38, 23.57, 26.36 and 21.19%, respectively. It indicated that size reduction enhanced significantly the encapsulation behavior of cellulose. Among all the milling time tested, 45 min-milling was better choice for encapsulation.
Subjects
cellulose
nano
spray drying
particle size and distribution
self-assembly
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-104-R01641048-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):bbb0f89482f75bf68e82ac6eddafbbdb

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science