Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Applied Mechanics / 應用力學研究所
  4. The Elimination of Temperature Effects on a Piezoresistive Microcantilever Biosensor
 
  • Details

The Elimination of Temperature Effects on a Piezoresistive Microcantilever Biosensor

Date Issued
2009
Date
2009
Author(s)
Ku, Yu-Fu
URI
http://ntur.lib.ntu.edu.tw//handle/246246/183563
Abstract
In this study, polycrystal silicon piezoresistive material is being designed and discussed for electro-mechanical transduction. Utilizing MEMS and semi-conductor ion doping technologies, this work demonstrates design, fabrication and integration of a piezoresistive microcantilever embedded in a microfluidic channel chip system with a Wheatstone Bridge to transfer mechanical bending into electrical voltage for output. Also, the microprobe and spectrum analyzer were introduced for the detection of Gauge factor and noise measurement in the piezoresistive microcantilever biosensor.n a conventional configuration of double-beamed microcantilever systems, the distinctive surfaces of sensing and reference free-standing cantilever beams yield independent signal outcome due to the effect of pH values in solution. In this study, the single free-standing microcantilever is chosen for detection in biochemical environments. However, the single free-standing microcantilever was significantly affected by a temperature change of about 25.73 μV/0C, which failed to be practical in application. Those are attributed to the temperature coefficient of resistance (TCR) and bimorph effect of multiple layers of distinctive materials, in which TCR has approximate 10 times in noise signal far larger than that of bimorph effect. The independence of TCR and bimorph effect still remains unsolved by the most commonly used Wheatstone bridge electrical circuit configuration of the current state of art. Therefore, a novel self thermal deduction by a temperature feedback approach is firstly developed for the piezoresistive microcantilever to eliminate temperature-induced noise and to achieve high performance. tilizing the fixed polysilicon resistance on chip as temperature sensor to obtain temperature T allows calculation and obtains relation between fixed and cantilever resistances for temperature feedback. Accurate temperature feedback has been proved available under large-scale temperature difference. Furthermore, the detection of C-reactive protein antigen was achieved without bulky temperature control devices. The surface stress induced by C-reactive protein antibody-antigen binding was measured with the elimination of microcantilever thermal-sensitive effect by the feedback apporoach. This approach has proven the feasibility of piezoresistive microcantilever and this system.
Subjects
Surface stress
Piezoresistor
Cantilever
Bimorph effect
TCR
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-98-R96543045-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):0bb43b2e262316ea0b87fe3079987007

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science