Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Mechanical Engineering / 機械工程學系
  4. Electrical impedance sensing system design for abnormal object detection
 
  • Details

Electrical impedance sensing system design for abnormal object detection

Journal
IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM
Journal Volume
2021-July
Pages
1313-1318
Date Issued
2021
Author(s)
CHUN-YEON LIN  
Chen H.-T
Cheng H.-F
He Y.-J.
DOI
10.1109/AIM46487.2021.9517604
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85114960625&doi=10.1109%2fAIM46487.2021.9517604&partnerID=40&md5=4349df639cc7b58e4c96bf62d131493d
https://scholars.lib.ntu.edu.tw/handle/123456789/598801
Abstract
This paper proposed a design for an electrical impedance (EI) sensing system. For the part of physical modeling, the harmonic electric fields of the EI sensing system are formulated by the distributed parameter element (DPE) method to calculate the electrode potentials for several injection patterns of different abnormal object distributions, and the computed electrode potentials are feed into a deep neural network (DNN) to estimate the location and size of the abnormal object. For the part of system development, an electric circuit that integrates the multiplexer and Howland pump is utilized to switch the current injection electrodes and control the injection currents. The harmonic electric fields computed by the DPE method are verified by the FEA software, and the effects of utilizing the DNN for abnormal object detection are numerically validated. The proposed design, along with a prototype of the EI sensing system, which is conducted on two kinds of materials, phantom and biological objects, have been experimentally compared. ? 2021 IEEE.
Subjects
Deep neural networks
Distributed parameter control systems
Electric fields
Electric impedance
Electric impedance measurement
Electric switches
Electrodes
Intelligent mechatronics
Object recognition
Abnormal object detections
Biological objects
Distributed parameter elements
Electrical impedance
Electrode potentials
Harmonic electric field
Object distribution
System development
Object detection
SDGs

[SDGs]SDG3

Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science