Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Efficient nuclei segmentation based on spectral graph partitioning
 
  • Details

Efficient nuclei segmentation based on spectral graph partitioning

Journal
Proceedings - IEEE International Symposium on Circuits and Systems
Journal Volume
2016-July
Pages
2723
Date Issued
2016
Author(s)
Lee, Gwo Giun (Chris)
Hung, Shi-Yu
Wang, Tai-Ping
Chen, Chun-Fu (Richard)
CHI-KUANG SUN  
YI-HUA LIAO  
DOI
10.1109/ISCAS.2016.7539155
URI
http://www.scopus.com/inward/record.url?eid=2-s2.0-84983420742&partnerID=MN8TOARS
https://scholars.lib.ntu.edu.tw/handle/123456789/434792
Abstract
Biomedical image processing that offers computer-aided diagnosis is much more popular due to the availability of high quality and large quantity of medical data. Our well-developed biomedical image computing system, which automatically extracts and segments the nucleus and cytoplasm of cell in medical images, is no doubt following this idea. Nonetheless, even though previous system provide good algorithmic performance, its throughput is limited by high computation load and data dependency. Therefore, we deploy spectral graph partitioning to improve computation speed of the most complex module, maker-controlled watershed transform for nuclei detection. By modeling our problem as a graph and embedding architectural costs as the attributes in vertices and edges, we equally distribute workload among processors and reduce overhead in data transfer rate. We deploy the proposed approach on Intel Core i7-930 CPU with four cores and eight threads and test 153 medical images; as a consequence, we achieve less data transfer and better load balance as compared to conventional workload distribution through clustering and other graph partitioning methods. © 2016 IEEE.
Subjects
graph theory; parallel processing; spectral graph theory; spectral partitioning; watershed transform
Publisher
Institute of Electrical and Electronics Engineers Inc.
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science