Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Polymer Science and Engineering / 高分子科學與工程學研究所
  4. Achieving Efficient Organic Optoelectronics via Stamping Technique
 
  • Details

Achieving Efficient Organic Optoelectronics via Stamping Technique

Date Issued
2011
Date
2011
Author(s)
Kuo, Tsung-Hsien
URI
http://ntur.lib.ntu.edu.tw//handle/246246/254505
Abstract
Solid type polymer solar cells (PSCs) have been extensively studied in this decade, although the efficiency is still lower than 5~6%. Its low fabrication cost, easy processing, and flexible property make it attractive to researchers. The PSCs and polymer light emitting diodes (PLEDs) were demonstrated by incorporating multilayer structure through solution process. In order to prevent the dissolution of the bottom layer by the subsequent process, we use a poly(di-methyl-silane) stamp to transfer the active layer onto the target surface. We introduced the strategical multilayer structure by using our previous developed stamping technique. In order to minimize the unfavorable contact between organics and electrodes for bulk heterojunction (BHJ) solar cells while not losing much the donor and acceptor junctions, we studied the bilayer structure which consists of different fraction of poly(3-hexylthiophene) (P3HT)/ [6,6]-phenyl-C61-butyric acid methyl ester (PCBM) blend layers. Furthermore, in order to balance carrier transport for PLEDs, we also studied the bilayer structure which consists of a bule-polyfluorene as light emitting layer (LEL) and poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-((4-sec-butylphenyl) imino-1,4 -phenylene)) (TFB) as a electron-blocking layer (EBL). We found that the efficiency of devices was readily manipulated by changing the constitution of each stacking layer. After optimizing the fabrication conditions for each functional layer, we obtained PSCs reaching a power conversion efficiency of 3.52%. The efficiency of PLEDs incorporating an EBL was 27% greater (reaching 4.7 cd A–1) than that prepared without an EBL layer.
Subjects
fullerene
heterojunction
light emitting diode
polymer
stamping process.
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-100-R98549017-1.pdf

Size

23.54 KB

Format

Adobe PDF

Checksum

(MD5):be8e40b143a8c9f46a49899984089d2b

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science