Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Management / 管理學院
  3. Business Administration / 工商管理學系暨商學研究所
  4. Fast fashion sales forecasting with limited data and time
 
  • Details

Fast fashion sales forecasting with limited data and time

Journal
Decision Support Systems
Journal Volume
59
Journal Issue
1
Pages
84-92
Date Issued
2014
Author(s)
TSAN MING CHOI  
Hui C.-L.
Liu N.
Ng S.-F.
Yu Y.
DOI
10.1016/j.dss.2013.10.008
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-84897614736&doi=10.1016%2fj.dss.2013.10.008&partnerID=40&md5=19b4e9a3971dc88ac1761a16ba6251e7
https://scholars.lib.ntu.edu.tw/handle/123456789/612319
Abstract
Fast fashion is a commonly adopted strategy in fashion retailing. Under fast fashion, operational decisions have to be made with a tight schedule and the corresponding forecasting method has to be completed with very limited data within a limited time duration. Motivated by fast fashion business practices, in this paper, an intelligent forecasting algorithm, which combines tools such as the extreme learning machine and the grey model, is developed. Our real data analysis demonstrates that this newly derived algorithm can generate reasonably good forecasting under the given time and data constraints. Further analysis with an artificial dataset shows that the proposed algorithm performs especially well when either (i) the demand trend slope is large, or (ii) the seasonal cycle's variance is large. These two features fit the fast fashion demand pattern very well because the trend factor is significant and the seasonal cycle is usually highly variable in fast fashion. The results from this paper lay the foundation which can help to achieve real time sales forecasting for fast fashion operations in the future. Some managerial implications are also discussed. ? 2013 Elsevier B.V. All rights reserved.
Subjects
Fashion forecasting; Fast fashion; Intelligent forecasting; Quick forecasting; Time series
Other Subjects
Business practices; Extreme learning machine; Fast fashion; Forecasting methods; Intelligent forecasting; Managerial implications; Operational decisions; Real data analysis; Algorithms; Sales; Time series; Forecasting
Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science