Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Medicine / 醫學院
  3. School of Medicine / 醫學系
  4. Mechanosensitive transient receptor potential vanilloid type 1 channels contribute to vascular remodeling of rat fistula vein
 
  • Details

Mechanosensitive transient receptor potential vanilloid type 1 channels contribute to vascular remodeling of rat fistula vein

Resource
Journal of Vascular Surgery, 52(5), 1310-1320
Journal
Journal of Vascular Surgery
Journal Volume
52
Journal Issue
5
Pages
1310-1320
Date Issued
2010-11
Date
2010-11
Author(s)
CHEN, YIH-SHARNG
URI
http://ntur.lib.ntu.edu.tw//handle/246246/233069
Abstract
Objective: We previously showed that matrix metalloproteinases (MMPs) contribute to tremendous blood flow-induced venous wall thickening during the maturation of an arteriovenous fistula (AVF). However, how veins in the fistula sense a dramatic change in the blood flow remains unknown. Because mechanosensitive transient receptor potential vanilloid channels (TRPVs) are present in the endothelium, we examined whether the Ca2+-permeable TRPVs play a role in remodeling of fistula veins. Methods: The fistula veins were generated at femoral AVF of Wistar rats. Changes in the hemodynamics and the width and internal radius of the iliac vein were studied at 3, 7, 14, and 28 days, then the iliac vein was removed and examined for changes in wall thickness and protein or mRNA expression by immunofluorecent stain, Western blot, or real time PCR. Changes in MMP2 activity was examined by gelatin zymography. Two ligatures were performed in iliac vein to prevent venodilatation to confirm the effect of dramatic changes in hemodynamics on TRPV expression. The specific role of TRPV was studied in another group of fistula veins given with capsazepine via a subcutaneous mini-osmotic pump for 28 days . Results: The fistula veins demonstrated high flow/wall shear stress (WSS), wall thickening, and venodilatation compared with control veins. The WSS increase was positively correlated with upregulation of TRPV1, but not TRPV4. Narrowing fistula veins prevented TRPV1 upregulation, indicating that high flow directly upregulates TRPV1. We examined the underlying signaling components and found that enhanced Ca2+/calmodulin-dependent protein kinase II (CaMK II) activity upregulated endothelial nitric oxide synthase ( eNOS) and downregulated arginase I in the fistula veins. These changes were reversed by a CaMK II inhibitor. The relative levels of eNOS and arginase I activity consequently augmented NO formation, which coincided with an increase in MMP2 activity. Chronic inhibition of TRPV1 in the fistula veins by capsazepine showed no effect on high flow and TRPV1 expression, but markedly attenuated WSS, which was concomitantly associated with attenuation of CaMK II activity, NO-dependent MMP2 activation, and remodeling. Conclusion: These findings indicate that TRPV1 is essential in the remodeling of AVFs and that WSS leads to TRPV1 upregulation, which then enhances remodeling, therefore, inhibition of TRPVI pathway may prolong the lifespan of an AVF by decreasing WSS and vein wall remodeling. (J Vase Surg 2010;52:1310-20.) Clinical Relevance: This study reveals that enhanced endothelial mechanosensation is requisite for the fistula remodeling in response to dramatic hemodynamic changes. Moreover, our findings demonstrate that Ca2+ signal triggered by TRPV1 upregulates cNOS and downregulates arginase I and which enhances NO formation to lead to MMP2 activation in extracellular matrix remodeling of fistula veins. These findings enhance understanding of the basic biologic mechanisms in the venous remodeling. The need for TRPV1-mediated remodeling suggests that clinical strategies to blunt mechanosensation of fistula veins during maturation might be more successful or prolong the life span of fistula veins if TRPV1 are inhibited as a part of the surgical or follow-up treatment.
Type
journal article
File(s)
Loading...
Thumbnail Image
Name

2010 JVS.pdf

Size

1011.64 KB

Format

Adobe PDF

Checksum

(MD5):3f5566d051104985cca8b3539313c8b9

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science