Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Electrical Engineering / 電機工程學系
  4. A large-area nanoplasmonic sensor fabricated by rapid thermal annealing treatment for label-free and multi-point immunoglobulin sensing
 
  • Details

A large-area nanoplasmonic sensor fabricated by rapid thermal annealing treatment for label-free and multi-point immunoglobulin sensing

Journal
Nanomaterials
Journal Volume
7
Journal Issue
5
Date Issued
2017
Author(s)
Lin, H.T.-H.
Yang, C.-K.
Lin, C.-C.
Wu, A.M.-H.
Wang, L.A.
LON A. WANG  
NIEN-TSU HUANG  
DOI
10.3390/nano7050100
URI
https://scholars.lib.ntu.edu.tw/handle/123456789/497213
URL
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85018884850&doi=10.3390%2fnano7050100&partnerID=40&md5=02cdb28f415dcd71ca206407316f479b
Abstract
Immunoglobulins are important biomarkers to evaluate the immune status or development of infectious diseases. To provide timely clinical treatments, it is important to continuously monitor the level of multiple immunoglobulins. Localized surface plasmon resonance (LSPR)-based nanoplasmonic sensors have been demonstrated for multiplex immunoglobulins detection. However, the sensor fabrication process is usually slow and complicated, so it is not accessible for large-area and batch fabrication. Herein, we report a large-area (2 cm × 2 cm) nanofabrication method using physical vapor deposition followed by a rapid thermal annealing treatment. To optimize the sensor performance, we systematically characterized three fabrication conditions, including (1) the deposition thickness; (2) the maximum annealing temperature, and (3) the annealing time. The corresponding absorbance spectrum profile and surface morphology of the nanostructures were observed by a UV-VIS spectrometer and atomic force microscopy. We then tested the sensitivity of the sensor using a glucose solution at different concentrations. The results showed that the sensor with 10 nm gold deposition thickness under 5-min 900 ?C rapid thermal annealing can achieve the highest sensitivity (189 nm RIU–1). Finally, we integrated this nanoplasmonic sensor with a microchannel and a motorized stage to perform a 10-spot immunoglobulin detection in 50 min. Based on its real-time, dynamic and multi-point analyte detection capability, the nanoplasmonic sensor has the potential to be applied in high-throughput or multiplex immunoassay analysis, which would be beneficial for disease diagnosis or biomedical research in a simple and cost-effective platform. ? 2017 by the authors.
SDGs

[SDGs]SDG3

[SDGs]SDG9

Type
journal article

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science