Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Civil Engineering / 土木工程學系
  4. Applications of the Method of Fundamental Solutions to the Helmholtz, Diffusion and Burgers’ Equations
 
  • Details

Applications of the Method of Fundamental Solutions to the Helmholtz, Diffusion and Burgers’ Equations

Date Issued
2005
Date
2005
Author(s)
Hu, Shu-Ping
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/50036
Abstract
The method of fundamental solutions (MFS) is one of the popular meshless methods, gaining attention in the recent past. Since this method is free from the integration of the singular functions, this method has been applied for the solution of partial differential equations representing many engineering problems. The present thesis focuses on the application of the MFS to simulate problems of elliptical waveguides, Stokes’ first and second problems and Burgers’ equation. Initially the MFS was utilized to solve elliptical waveguide problems by solving the Helmholtz equation using the singular value decomposition (SVD) method. The method could predict the results for the cutoff wavelengths in close agreement with analytical results. Later the MFS was applied to solve unsteady Stokes’ first and second problems. The time derivatives are handled by a time-space domain concept, which completely avoids the requirement of Laplace transformation or the finite difference scheme to discretize the time derivatives. Results obtained for the unsteady Stokes’ first and second problems indicate that the MFS could predict results closer to the analytical solutions. An error analysis carried out also demonstrates that the proposed numerical scheme based on the MFS can produce stable numerical results for unsteady problems solved on semi-infinite domain. Finally, the MFS procedure was extended to solve non-linear Burgers’ equation in combination with the Eulerian-Lagrangian method and the Cole-Hopf transformation independently. The numerical experiments demonstrate that the MFS performs very well in combination with the above schemes to solve non-linear partial differential equations as well. Results obtained for many test cases of the non-linear Burgers’ equations in 1-D and 2-D domains indicate the present scheme could produce results closer to the analytical results. The results discussed in the thesis show that the MFS is a powerful meshless numerical scheme to solve non-linear partial differential equations.
Subjects
無網格法
基本解法
赫姆霍茲方程式
特徵值
奇異值分解法
波導管
擴散方程式
史托克斯第一問題
史托克斯第二問題
尤拉-拉格朗日法
柏格斯方程式
柯爾霍普夫轉換
Meshless
Method of fundamental solutions
Helmholtz equation
Eigenvalue
Singular value decomposition
Waveguides
Stokes’ first problem
Stokes’ second problem
Burgers’ equation
Eulerian-Lagrangian method
Cole-Hopf transformation.
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-94-R92521315-1.pdf

Size

23.31 KB

Format

Adobe PDF

Checksum

(MD5):61cb4bc1d44f10ce8a65ca53d125e574

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science