Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Bioresources and Agriculture / 生物資源暨農學院
  3. Bioenvironmental Systems Engineering / 生物環境系統工程學系
  4. Application of Markov Chain Monte Carlo Methodology to Reduction of Parameter Uncertainty in a Sediment Entrainment Model
 
  • Details

Application of Markov Chain Monte Carlo Methodology to Reduction of Parameter Uncertainty in a Sediment Entrainment Model

Date Issued
2006
Date
2006
Author(s)
Chen, Chen-Chi
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/56087
Abstract
This study investigates the application of Markov Chain Monte Carlo (MCMC) methodology to reduction of parameter uncertainty in a sediment entrainment model. Markov Chain Monte Carlo methodology is efficient for numerical Bayesian inference, particularly in high-dimension problems. In this work, a Bayesian framework of model parameters and outputs has been developed for updating model parameters by Markov Chain Monte Carlo methodology using the measured data. The results show that the parameter posterior distribution has a narrower range than the prior distribution, which means the parameter uncertainty is reduced. This study investigates the effect of different chain numbers and starting values on the convergence of MCMC. Little difference was observed between the results of two chains and three chains. This study also investigates the effect of different amount of data. Results show that the more data available, the more effective by the uncertainty is reduced. It is found that the posterior obtained by multiple-parameter updating is similar to those calculated by empirical formula and less prone to model inaccuracy than the posterior by single-parameter updating. To accelerate the computation speed, this study applies Monte Carlo integration to replace the traditional numerical adaptive quadrature. Results show that Monte Carlo integration effectively reduces computation time within the tolerance. As the sample number increases, the error decreases but the run time increases. This study uses the compromise programming to optimize the sample number.
Subjects
馬可夫鏈蒙地卡羅法
參數不確定性
數值貝氏推論
Markov Chain Monte Carlo
parameter uncertainty
numerical Bayesian inference
Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-95-R93622044-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):1cc6a8d7d166d899f783b642f0d9ea41

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science