Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Engineering / 工學院
  3. Chemical Engineering / 化學工程學系
  4. Hot-Zone Design and Analysis of Highly Efficient Czochralski Silicon Growth for Photovolatic Application
 
  • Details

Hot-Zone Design and Analysis of Highly Efficient Czochralski Silicon Growth for Photovolatic Application

Date Issued
2004
Date
2004
Author(s)
Huang, Li-Yi
DOI
zh-TW
URI
http://ntur.lib.ntu.edu.tw//handle/246246/52297
Abstract
Several hot-zone designs are presented for Czocharlski silicon growth for photovoltaic applications. Without sacrificing the crystal quality, a significant reduction of power and argon consumption was achieved, while the pulling rate was significantly increased. More importantly, the oxygen content was greatly reduced leading to longer minority lifetime of the wafers. According to the results of experiments and simulations, the variation of the axial oxygen distribution could be improved by gradually increasing the crucible rotation speed during the growth.. The major works of the thesis were hot-zone design and computer simulation. The experiments to prove the results of the designs were carried out by SAS. The design reported here included the radiation shield (molybdenum, graphite with different coatings, and composite cone) additional side and bottom insulations (graphite and graphite-felt), and upper side insulation. This thesis made simulations on the power consumption, interface concavity, the crucible and the heater temperature. Then, the growth experiments with the new hot-zone design were carried by SAS. Good agreement was found in the power consumption and a reference temperature near the heater between computer modeling and experimental measurements. The best hot zone design so far has let to a power consumption reduced from 59.1 kWh/kg to 17.4 kWh/kg, the pulling rate was increased from 0.8 mm/min to 1.32 mm/min, the average oxygen content was decreased from 17 ppma to 6.3 ppma, the consumption of argon was also reduced from 93.3 c.f../kg to 27.1 c.f./kg, the degradation rate of the graphite elements was greatly reduced, while, the interface concavity was still remained the same. According to the comparison of productivity, cost, and quality, our design has overtaken that by Siemens Solar Inustries(SSI).
Subjects
柴式法
缺陷
界面
質傳
矽
輻射
熱傳
電腦模擬
heat trans
computer simulation
silicon
Czochralski
SDGs

[SDGs]SDG7

Type
thesis
File(s)
Loading...
Thumbnail Image
Name

ntu-93-D89524004-1.pdf

Size

23.53 KB

Format

Adobe PDF

Checksum

(MD5):ced2ea477b3d366dedd70f6a186c9085

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science