Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Electrical Engineering and Computer Science / 電機資訊學院
  3. Computer Science and Information Engineering / 資訊工程學系
  4. Mandarin Electrolaryngeal Speech Voice Conversion with Sequence-to-Sequence Modeling
 
  • Details

Mandarin Electrolaryngeal Speech Voice Conversion with Sequence-to-Sequence Modeling

Journal
2021 IEEE Automatic Speech Recognition and Understanding Workshop, ASRU 2021 - Proceedings
Pages
650-657
Date Issued
2021
Author(s)
Yen M.-C
Huang W.-C
Kobayashi K
Peng Y.-H
Tsai S.-W
Tsao Y
Toda T
JYH-SHING JANG  
Wang H.-M.
DOI
10.1109/ASRU51503.2021.9687908
URI
https://www.scopus.com/inward/record.uri?eid=2-s2.0-85126824776&doi=10.1109%2fASRU51503.2021.9687908&partnerID=40&md5=bc70906cb2770c39bf1793c32bdface9
https://scholars.lib.ntu.edu.tw/handle/123456789/632437
Abstract
The electrolaryngeal speech (EL speech) is typically spoken with an electrolarynx device that generates excitation signals to substitute human vocal fold vibrations. Because the excitation signals cannot perfectly characterize sound sources generated by vocal folds, the naturalness and intelligibility of the EL speech are inevitably worse than that of the natural speech (NL speech). To improve speech naturalness, statistical models, such as Gaussian mixture models and deep-learning-based models, have been employed for EL speech voice conversion (ELVC). The ELVC task aims to convert EL speech into NL speech through an ELVC model. To implement a frame-wise ELVC system, accurate feature alignment is crucial for model training. However, the abnormal acoustic characteristics of the EL speech cause misalignments and accordingly limit the ELVC performance. To address this issue, we propose a novel ELVC system based on sequence-to-sequence (seq2seq) modeling with text-to-speech (TTS) pretraining. The seq2seq model involves an attention mechanism to concurrently perform representation learning and alignment. Meanwhile, TTS pretraining provides efficient training with limited data. Experimental results show that the proposed ELVC system yields notable improvements in terms of standardized evaluation metrics and subjective listening tests over a well-known frame-wise ELVC system. © 2021 IEEE.
Subjects
electrolaryngeal speech; pretraining; sequence-to-sequence learning; transformer; voice conversion
Other Subjects
Petroleum reservoir evaluation; Speech intelligibility; Conversion systems; Electrolaryngeal speech; Excitation signals; Natural speech; Pre-training; Sequence learning; Sequence-to-sequence learning; Text to speech; Transformer; Voice conversion; Deep learning
Type
conference paper

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science