Repository logo
  • English
  • 中文
Log In
Have you forgotten your password?
  1. Home
  2. College of Science / 理學院
  3. Physics / 物理學系
  4. Magnetic Properties of Self-Aligned Fe, Mn Nanoparticles and Fe Capped Mn Nanoparticles on Nanostructured Template Al2O3/NiAl(100)
 
  • Details

Magnetic Properties of Self-Aligned Fe, Mn Nanoparticles and Fe Capped Mn Nanoparticles on Nanostructured Template Al2O3/NiAl(100)

Date Issued
2007
Date
2007
Author(s)
Yen, Hong-Yu
DOI
en-US
URI
http://ntur.lib.ntu.edu.tw//handle/246246/54513
Abstract
Interest in magnetic nanoparticles has increased in the recent years due to the industrial applications such as the ultra-high density storage device and the fundamental interest in finite size effect. By naturally grown stripe structures with ~ 4 nm interdistance on the Al2O3 layer, Fe and Mn nanoparticles were prepared by self assembling. The surface morphology and magnetic properties were characterized by STM and MOKE, respectively. The 9~33 ML Fe and 0.1~16.9 ML Mn nanoparticles both reveal that the separation of particles decreases with increasing coverage. [1 ML is defined as the surface atom density: 1.54 × 10^15 at./cm2 on Cu(100).] The Fe nanoparticles are magnetic isotropic until 23 ML, and the twostep hysteresis loops of 23, 33 ML are ascribed to the uniaxial anisotropies with the higher order term along the stripe directions, which is supported by the Stoner-Wohlfarth simulation. Mn nanoparticles are proven to be non-ferromagnetic at 0.1~8.5 ML and there is no exchange bias with Fe capped on 3.4~16.9 ML Mn at our lowest accessible temperature ~ 130 K. For 17.6 ML Fe capped n ML Mn (n= 3.4~16.9), the drastic reduction of magnetic moments and the enhancement of coercivity were found at RT (room temperature), while at LT (150 K), the coercivity decreases unusually. The increasing roughness with increasing coverage of Mn and Fe-Mn interdiffusion account for the RT observations, and the temperature dependent reversed domain nucleation and domain wall pinning may be responsible for the LT behaviors.
Subjects
鐵奈米顆粒
錳奈米顆粒
磁性
鐵磁覆蓋層
臺階狀磁滯曲線
Fe nanoparticle
Mn nanoparticle
magnetism
Fe capping layer
two-step hysteresis loop
Type
thesis

臺大位居世界頂尖大學之列,為永久珍藏及向國際展現本校豐碩的研究成果及學術能量,圖書館整合機構典藏(NTUR)與學術庫(AH)不同功能平台,成為臺大學術典藏NTU scholars。期能整合研究能量、促進交流合作、保存學術產出、推廣研究成果。

To permanently archive and promote researcher profiles and scholarly works, Library integrates the services of “NTU Repository” with “Academic Hub” to form NTU Scholars.

總館學科館員 (Main Library)
醫學圖書館學科館員 (Medical Library)
社會科學院辜振甫紀念圖書館學科館員 (Social Sciences Library)

開放取用是從使用者角度提升資訊取用性的社會運動,應用在學術研究上是透過將研究著作公開供使用者自由取閱,以促進學術傳播及因應期刊訂購費用逐年攀升。同時可加速研究發展、提升研究影響力,NTU Scholars即為本校的開放取用典藏(OA Archive)平台。(點選深入了解OA)

  • 請確認所上傳的全文是原創的內容,若該文件包含部分內容的版權非匯入者所有,或由第三方贊助與合作完成,請確認該版權所有者及第三方同意提供此授權。
    Please represent that the submission is your original work, and that you have the right to grant the rights to upload.
  • 若欲上傳已出版的全文電子檔,可使用Open policy finder網站查詢,以確認出版單位之版權政策。
    Please use Open policy finder to find a summary of permissions that are normally given as part of each publisher's copyright transfer agreement.
  • 網站簡介 (Quickstart Guide)
  • 使用手冊 (Instruction Manual)
  • 線上預約服務 (Booking Service)
  • 方案一:臺灣大學計算機中心帳號登入
    (With C&INC Email Account)
  • 方案二:ORCID帳號登入 (With ORCID)
  • 方案一:定期更新ORCID者,以ID匯入 (Search for identifier (ORCID))
  • 方案二:自行建檔 (Default mode Submission)
  • 方案三:學科館員協助匯入 (Email worklist to subject librarians)

Built with DSpace-CRIS software - Extension maintained and optimized by 4Science